

Controlled Copy No. ____

Approval and Revision Control

Approved by	Title	Signature	Date
Peter Stapleton	Acting Manager Water and Waste	Falle Staplito	13/06/2025

Controlled Hardcopy Distribution List

Copy No.	Position Title	Officer's Name
1	Manager Water and Waste	Chris Hocking
2	Coordinator Water & Sewerage Process Operations	Peter Stapleton
3	Technical Specialist	Michael Dalton

Revision

Revision No.	Title	Revised By	Date
1	Drinking Water Quality Management Plan	Sean Fallis	25/06/2015
2	Drinking Water Quality Management Plan	Sean Fallis	28/09/2018
3	Drinking Water Quality Management Plan	Sean Hinton	24/08/2020
4	Drinking Water Quality Management Plan	Sean Hinton	10/12/2020
5	Drinking Water Quality Management Plan	Nigel Deacon	30/03/2021
6	Drinking Water Quality Management Plan	Peter Stapleton	20/09/2022
7	Drinking Water Quality Management Plan	Peter Stapleton	22/02/2023
8	Drinking Water Quality Management Plan	Peter Stapleton	24/05/2023
9	Drinking Water Quality Management Plan	Peter Stapleton	12/08/2024
10	Drinking Water Quality Management Plan	Peter Stapleton	12/03/2025
11	Drinking Water Quality Management Plan	Peter Stapleton	30/05/2025
12	Drinking Water Quality Management Plan	Peter Stapleton	13/06/2025

TABLE OF CONTENTS

Ε	XECU	JTIVE SUMMARY	5
Ρ	ART 1	1 COMPLETE OVERVIEW	8
1		Purpose	8
	1.1	Plan structure	
	1.2	Commitment to Drinking Water Quality	8
2		Regulatory Requirements	8
3	3.1	Alignment to the Australian Drinking Water Guidelines Microbial Health Based Targets	
4		Service Details	
	4.1	Overview of Drinking Water Schemes	
	4.2	High Level Scheme Description	
	4.3 4.4	Current Details and Future Demand	
_		Stakeholders Relevant to Managing Drinking Water Quality	
5			
6	6.1	Hazard Identification and Risk Assessment	17 17
	6.2	Risk Assessment Team	18
	6.3	Hazard identification and Unmitigated Risk Assessment	
7		Operational and Verification Monitoring	
	7.1	Operational monitoring	23
	7.	.1.1 Operational Procedures	
	7.2	Verification monitoring:	
		.2.1 Escherichia coli monitoring schedule	
		.2.2 Other Monitoring Parameters	
8		DWQMP Emergency Response Plan	27
	8.1	Detail of Incidents and Response Levels:	
	_	.1.2 Level 2 Incident or Emergency	
		.1.3 Level 3 Declared Disaster	
	8.2	Multiple entity arrangements	
	8.3	Example incident response	
	8.	.3.1 Exceedance of Water Quality Criteria	29
9		Employee Awareness and Training	
	9.1	Training	
		.1.1 Formal training:	
	_	.1.2 Informal training:	
4		.1.3 Employee awareness of DWQMP	
1	0 10.1	Community Engagement Consultation and Communication	
4			
1	1 11.1	Research and Development	
	11.2		
	11.3		
1:	2	Documentation & Reporting - Quality Management System	
	_ 12.1		
	12.2	2 Verification monitoring data	33
	12.3	,	
1		Evaluation and Audit	
	13.1	Long term evaluation of results	33

	13.2 Audits	33
14	4 Review and Continual Improvement	33
	14.1 Water Quality Customer Inquiries & Complaints	
	14.2 Risk Management Improvement Plan	35
P	PART 2 CAPRICORN COAST DRINKING WATER SCHEME	39
1		
	1.1 Catchment Description	
	1.1.1 Water Park Creek	
	1.1.2 Fitzroy River Catchment	
2	• • • • • • • • • • • • • • • • • • •	
	Woodbury Water Treatment Plant	
	2.1.1 Process description: 2.2 Rockhampton- Yeppoon Pipeline	
	2.2.1 Glenmore Water Treatment Plant	
	2.3 Reticulation network	
3		
4		
5		
6		
-	PART 3 THE CAVES DRINKING WATER SCHEME	
. <i>.</i> 1		
•	1.1 Catchment description	
2		
_	2.1.1 Glenmore Water Treatment Plant	60
	2.1.2 Reticulation:	
3	Water Quality Information	62
4	Hazards	63
5	Risk Assessment	63
6	Operational Monitoring	63
P	PART 4 NERIMBERA DRINKING WATER SCHEME	65
1	Overview of Scheme	65
	1.1 Catchment description	65
2	Scheme Infrastructure and Operation	66
	2.1.1 Glenmore Water Treatment Plant	
	2.1.2 Reticulation:	
3	Water Quality Information	68
4	Hazards	68
5		
6	Operational Monitoring	68
P	PART 5 MARLBOROUGH DRINKING WATER SCHEME	70
1		
	1.1 Marlborough Bores	70

2	Scheme Infrastructure and Operation	71
3	Water Quality Information	75
4	Hazards	78
5	Risk Assessment	78
6	Operational Monitoring	81
	ENDIX A – High Risk Customers & Pipeline Customers	
APP	ENDIX B – List of Operational Documents	83
APP	ENDIX C – Bulk Water Supply Agreement (extracts)	85
APP	ENDIX D – Water Supply Schematics	86

FIGURES	
Figure 1 - Marlborough location map	11
Figure 2 - Nerimbera and the Caves location map	11
Figure 3 - ATT.134 Livingstone Shire Council's Water Supply Schemes – High Level	
Schematic	13
Figure 4 - Points of transfer between FRW and LSC	14
Figure 5 - Woodbury WTP Raw Water <i>E. coli</i> Data 2020-2025	40
Figure 6 - ATT.189 Woodbury Water Treatment Plant Schematic	
Figure 7 - Capricorn Coast Water Mains by Age and Material	
Figure 8 - The Caves schematic	
Figure 9 - The Caves Water Mains by Age and Material	62
Figure 10 - Nerimbera schematic	66
Figure 11 - Nerimbera Water Mains by Age and Material	67
Figure 12 - Marlborough WTP Raw Water E. coli Data 2020-2025	71
Figure 13 - Marlborough Water Mains by Age and Material	
Figure 14 - Marlborough WTP Schematic	74
TABLES	
Table 1 - Current and future connections, population and water demands	14
Table 2 - Summary of each drinking water scheme	
Table 3 - Stakeholders involved in the management of drinking water quality	
Table 4 Risk Assessment Definitions and Descriptors	
Table 5 - Risk matrix	
Table 6 - Risk assessment team	
Table 6 - Hazard Identification – all schemes	
Table 7 - Potable Water Sampling Points	
Table 8 - Emergency Response Levels	
Table 9 - Software systems used for management of information	
Table 10 - Drinking Water Quality Customer Inquiries and Complaints	
Table 11 Risk management improvement program	
Table 12 Capricorn Coast reservoir details	
Table 13 - Operational monitoring data summary – Woodbury WTP (2020 to 2025)	48
Table 14 - Verification monitoring data – Woodbury WTP raw and treated water, standard	
water analyses & heavy metals (2020-2025)	49
Table 15 - Verification monitoring data – Glenmore WTP Raw Water, standard water	
analyses & heavy metals (2018-2023)	51
Table 16 - Verification monitoring data – Glenmore WTP Treated Water, standard water	
analyses & heavy metals (2018-2023)	52
Table 17 - Verification monitoring data summary – Capricorn Coast (2020 to 2025)	52
Table 18 Mitigated risk assessment – Capricorn Coast	
Table 19 - The Caves reservoir details	62
Table 20 - Verification monitoring data summary The Caves reticulation (2020 to 2025)	62
Table 21 Mitigated Risk Assessment – The Caves	
Table 22 - Verification monitoring data summary Nerimbera reticulation (2020 to 2025)	68
Table 23 Mitigated Risk Assessment – Nerimbera	69
Table 24 - Verification monitoring data summary – Marlborough reticulation (2020 to 2025	
Table 25 - Verification monitoring – Marlborough WTP raw & treated water, standard water	er
analyses & heavy metals (2020-25)	
Table 26 Mitigated Risk Assessment – Marlborough	

EXECUTIVE SUMMARY

The Livingstone Shire Council (LSC) Drinking Water Quality Management Plan (DWQMP) has been prepared in accordance with section 95 of the *Water Supply (Safety and Reliability) Act*. The purpose of the DWQMP is to protect public health through the comprehensive management of drinking water quality.

The drinking water quality management plan follows a risk-based management approach and demonstrates how LSC effectively manages the drinking water services on the Capricorn Coast and Marlborough from catchment to tap, and from point of supply from Rockhampton Regional Council to tap for The Caves and Nerimbera water supply scheme to ensure that a safe and reliable supply of drinking water is provided to all our customers.

The DWQMP is structured in four parts to provide an overview of the drinking water service, and the key management measures that apply to all schemes. Each drinking water scheme is detailed separately to provide a site-based management plan suitable for use by the operators of the schemes. It is intended that these documents are used in conjunction with the operational procedures to ensure effective management of the drinking water supply.

This plan identifies the key hazards and hazardous events which may affect the services, and after identifying the preventative measures that are in place, assesses the mitigated risk that these hazards pose to the service. Where mitigated risks are considered unacceptable, further preventative measures are identified as improvement items. These improvement items are prioritised and recommended to Council for funding as considered appropriate.

PART 1 COMPLETE OVERVIEW

1 Purpose

The Livingstone Shire Council (LSC) Drinking Water Quality Management Plan (DWQMP) documents the water services supplied by Council. The DWQMP identifies and demonstrates how Council manages the risks to the water supply services provided. The DWQMP is based on the best practice guidelines of the Australian Drinking Water Guidelines.

1.1 Plan structure

The DWQMP is structured to address the 12 Elements of the Australian Drinking Water Guidelines. Part 1 of the DWQMP provides:

- Commitment to drinking water quality (Element 1)
- A high-level overview of the drinking water services,
- Description of the Risk Methodology used (partially meeting Element 2)
- Emergency Response Plan, (Element 6)
- Supporting Requirements (Elements 7-10)
- Review and Audit requirements (Elements 11-12)

Parts 2 to 5 of the DWQMP are scheme based; each scheme individually addresses the:

- Assessment of the drinking water supply system (Element 2)
- Preventative measures for drinking water quality (Element 3)
- Operational procedures and process control (Element 4)
- Verification of drinking water quality (Element 5)

In so doing, the regulatory requirements (detailed in Section 2) are also addressed.

1.2 Commitment to Drinking Water Quality

LSC will:

- Take all reasonable action to provide its customers with reliable and continuous services.
- Endeavour to ensure that the water supplied meets the health and aesthetic guidelines stated in the Australian Drinking Water Quality Guidelines.

2 Regulatory Requirements

Drinking Water Quality Management is regulated in part by the following Acts and Regulations.

- Water Supply (Safety and Reliability) Act 2008
 - Water Supply (Safety and Reliability) Regulation 2011
- Public Health Act 2005
 - Public Health Regulation 2018

Water management is also impacted by other Acts (such as the *Water Act 2000*, and the *Environment Protection Act 1994*), but these are outside the scope of the Drinking Water Quality Management Plan.

3 Alignment to the Australian Drinking Water Guidelines

Livingstone Shire Council has developed the DWQMP to align with the 12-element framework of the Australian Drinking Water Guidelines (ADWG). The DWQMP is underpinned by the ADWG guiding principles, where;

- 1. The greatest risks to consumers are pathogens. Protection of water sources and treatment are of paramount importance and must never be compromised
- 2. The drinking water system must have and continuously maintain, robust multiple barriers appropriate to the level of potential contamination facing the raw water supply
- 3. Any sudden of extreme change in water quality, flow or environmental conditions should arouse suspicion that the drinking water might become contaminated
- 4. System operators must be able to respond quickly and effectively to adverse monitoring signals
- 5. System operators must maintain a personal sense of responsibility and dedication to providing consumers with safe water, and should never ignore a customer complaint about water quality
- 6. Ensuring drinking water safety and quality requires the application of a considered risk management approach.

Council acknowledges that our current water treatment plants do fully comply with all of the guiding principles – as described in each site specific plan.

3.1 Microbial Health Based Targets

The drinking water treatment plants in LSC were not originally designed to meet the full intent of the current Australian Drinking Water Guidelines (as the ADWG postdates the construction of the plants). However, based on a preliminary review of the raw water microbial data, treated water turbidity and chlorine contact calculations, the Woodbury and Marlborough water treatment plants meet the required Log Reduction Values (LRV) required, based on the catchment characterisations. This preliminary review will be formalised before councils four (4) yearly Drinking Water Quality Management Plan External Regulatory audit in October 2025.

In discussions with Fitzroy River Water (FRW), council is aware that they conducted a recent assessment of their Glenmore water treatment plant (GWTP) against the good practice guide and incorporating microbial health-based targets, and they identified that the Glenmore water treatment plant has a shortfall in (at least) protozoan reduction and will require significant upgrades over time to meet the current treatment expectation.

However, it is also clear that there is no health evidence that this supply is immediately unsafe. That is, upgrading the treatment plants is clearly necessary but is not required immediately. LSC is under the understanding that a capital works bid has been submitted by FRW for a UV system to meet the required LRV in the future.

4 Service Details

Livingstone Shire Council

Registered Service Provider ID 556

Ph: 4913 5000 or 1300 790 919 | Fax: 4936 4776

Registered Business Address: 25 Normanby Street, Yeppoon Qld 4703

Mailing Address: PO Box 2292, Yeppoon Qld 4703

Web: www.livingstone.qld.gov.au

4.1 Overview of Drinking Water Schemes

LSC de-amalgamated from Rockhampton Regional Council on 1st January 2014. LSC defines 4 drinking water schemes:

- 1. Capricorn Coast Water Supply Scheme (Multiple provider arrangement).
- 2. The Caves Water Supply Scheme (Multiple provider arrangement).
- 3. Nerimbera Water Supply Scheme (Multiple provider arrangement).
- 4. Marlborough Water Supply Scheme (LSC only).

LSC also operates the non-potable Ogmore water supply.

The Capricorn Coast Scheme centres on Yeppoon, the Caves and Nerimbera schemes (Figure 2) and are located close to Rockhampton, and the Marlborough Water Supply Scheme (Figure 1) is located at Marlborough. The current Council boundary is identified in green for the Figures 1 and 2.

A high-level schematic showing all of LSC's water supply schemes, reservoirs, and key trunk mains is provided in Figure 3.

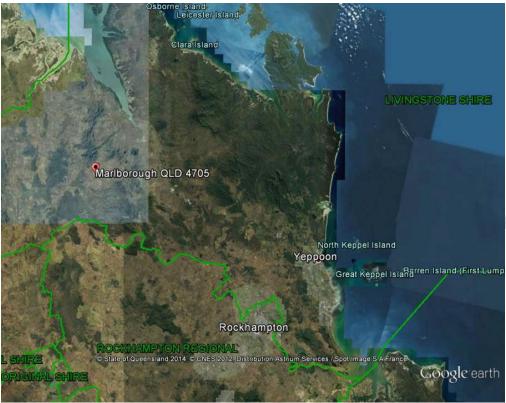


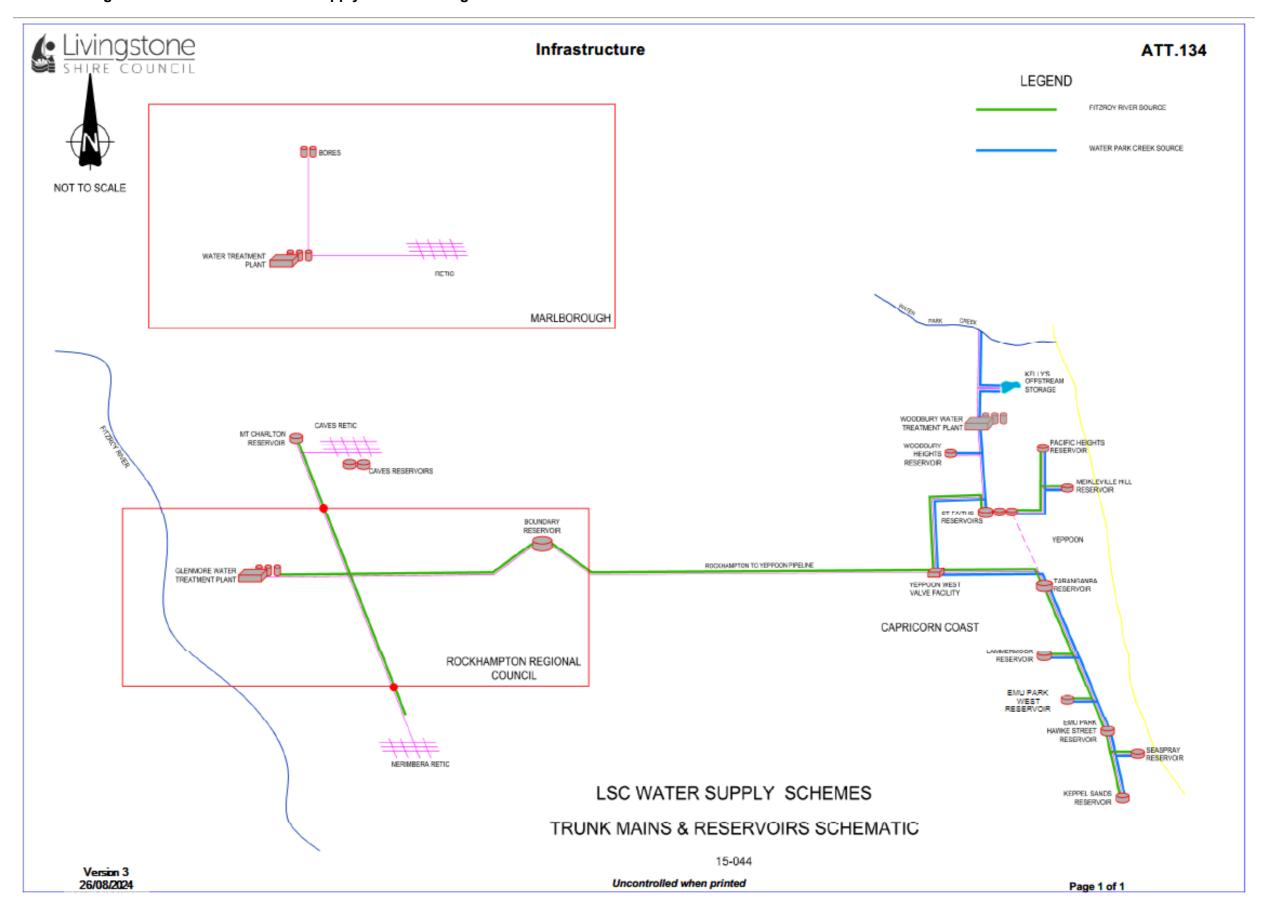
Figure 1 - Marlborough location map



Figure 2 - Nerimbera and the Caves location map

4.2 High Level Scheme Description

Operationally these schemes are unique, and each scheme has different considerations.


The Capricorn Coast Scheme serves the communities of Yeppoon, The Causeway, Kinka Beach, Zilzie, Emu Park and Keppel Sands. The Mercure Capricorn Resort is a major customer at Yeppoon. Capricorn Coast has two distinct water supplies. The first supply is Water Park Creek which is harvested into the Kelly's Offstream Storage. Water from this storage is conventionally treated and disinfected at the Woodbury Water Treatment Plant (WTP), which is operated by LSC. Water from the Woodbury WTP is supplemented by a second water supply via the Rockhampton to Yeppoon Water Supply Pipeline. This 40 km pipeline supplies water treated conventionally by FRW, a business unit of Rockhampton Regional Council, at their Glenmore WTP.

The water supplies for The Caves and Nerimbera areas are sourced from and are zones within the Glenmore Water Treatment Plant reticulation network. LSC has no role in treating the water for these zones with the exception of re-chlorination at Mt Charlton reservoir in The Caves scheme. The local government boundary separates these areas from the Glenmore WTP reticulation network. The Caves and Nerimbera distribution areas are separate and distinct. The Caves area, located to the North of Rockhampton, includes the Mt Charlton, Ramsay Creek, Etna Creek, Glenlee, Glendale and Rockyview, and The Caves communities. The Capricorn Correctional Centre is a major customer in this zone. Water is supplied to LSC at the Ramsay St flow monitoring point. There is a small reticulation area off Argyle St where drinking water returns to FRW control. Areas of Parkhurst can also be backfed through the Ramsay Creek valve when FRW is not pumping into Mount Charlton. Both LSC and FRW agree that there is no further increase in public health risks to FRW due to this arrangement. Nerimbera is a small community located 8 km East of Rockhampton town centre, and pressure is maintained by the Lakes Creek Road Water Pump Station. LSC has no pumps or reservoirs in the Nerimbera scheme. There is an abattoir located at the far end of this reticulation zone, and this is considered to be a high-risk customer. There is no further treatment or rechlorination in this zone.

The points of transfer between FRW and LSC are shown in Figure 4 - .

The Marlborough Water Supply Scheme is a bore water catchment to tap scheme that serves the community of Marlborough. Bore water is treated by bag filtration and/or reverse osmosis prior to disinfection. It is fully owned and operated by LSC.

Figure 3 - ATT.134 Livingstone Shire Council's Water Supply Schemes - High Level Schematic

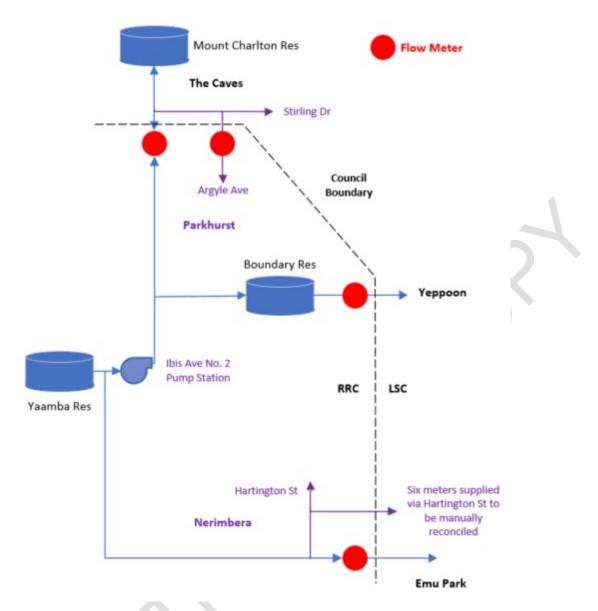


Figure 4 - Points of transfer between FRW and LSC

4.3 Current Details and Future Demand

Table 1 - Current and future connections, population and water demands.

	(Current (2023)		Future (2031)		
Scheme	Population	Connections	Demand (ML/day)	Population	Connections	Demand (ML/day)
Capricorn Coast	29123	11,649	12.2	34044	13618	14.3
The Caves	3655	1462	3.4	4273	1709	4
Nerimbera	248	99	1.3	289	116	1.5
Marlborough	140	56	0.035	164	65	0.04

Population estimates based on QLD Govt. Statistician's Office data; 2.5 persons per dwelling.

Future scenario based on QLD Govt. Statistician's Office projected 10-year growth rate of 1.6%.

Current and future demand can be met with existing infrastructure as the proportion of flow to Capricorn Coast from the pipeline is able to be significantly increased; population growth does not need to be considered as a hazard to the service at this time.

4.4 Scheme Details

The following table identifies the sources of raw water, catchment characterisation and treatment processes for each of the drinking water schemes

Table 2 - Summary of each drinking water scheme.

	Capricorn The Coast* Caves/Nerimbera**		Marlborough	
Water Source	Water Park Creek	Fitzroy River	Marlborough Bores	
Catchment / Bore Characterisation	Category 2	Category 4 unprotected	Secure groundwater (Category 1)	
Treatment Processes	Coagulation Sedimentation Filtration	Coagulation Sedimentation Filtration	Reverse Osmosis	
Protozoan Barriers	Single	Single	Single	
Disinfection	Chlorine Gas	Chlorine Dioxide/Chlorine Gas	Sodium Hypochlorite	

^{*} Council acknowledges that Fitzroy River Water provides LSC treated water through a conventional treatment process at the Glenmore WTP from a category 4 characterized catchment. This water is then blended with water from LSC Woodbury Water Treatment Plant.

^{**} This is an unblended supply direct from Fitzroy River Water Glenmore Water Treatment Plant.

5 Stakeholders Relevant to Managing Drinking Water Quality

The following list includes the stakeholders that are involved in various aspects of drinking water quality management.

Table 3 - Stakeholders involved in the management of drinking water quality

Name of Stakeholder	How Involved	Stakeholder Contribution		
All Water Supply Schemes				
Department of Local Government , Water and	Water Supply (Safety and & Reliability) Act Water Act 2008	Regulator of drinking and recycled water schemes, incident management (referred to in this document as the Regulator)		
Volunteers (DLGWV)	Water Act 2000	Water quality and quantity monitoring and management		
Queensland Health	Public Health Act 2005 Water Fluoridation Act	Primary responsibility for public health, incident management		
Department of Environment and Science	Environment Protection Act 1994	Regulator for protection of the environment.		
	Capricorn Coast Water	Supply Scheme		
Rockhampton Regional Council (trades as Fitzroy River Water)	Bulk water supply	Treats and supplies drinking water through the Rockhampton-Yeppoon water pipeline		
Byfield Community Reference Panel	Water Park Creek raw water source	Water Park Creek waterways health management		
Hospital/ Aged Care/ Child Care	Vulnerable customers	At risk customers		
Dialysis Users	Vulnerable customers	At risk customers		
Surf Lakes	Reticulation supply to wave park	Major commercial customer		
	The Caves Water Sup	pply Scheme		
Fitzroy River Water	Bulk water supply	Treats and supplies drinking water to The Caves scheme.		
Capricorn Correctional Centre	Reticulation supply to Prison	Major customer, large population.		
	Nerimbera Water Sup	pply Scheme		
Fitzroy River Water	Bulk water supply	Treats and supplies drinking water to Nerimbera scheme.		
JBS Meatworks	Reticulation supply to abattoir	Major commercial customer		
	External Contractor	s/Suppliers		
Ixom	WTPs and Reservoirs	Treatment chemical supplier		
Omega Chemicals	WTPs	Treatment chemical supplier		
Coogee Chemicals	WTPs and Reservoirs	Treatment chemical supplier		
SNF	WTPs	Treatment chemical supplier		
Activated Carbon Technologies	WTPs	Treatment chemical supplier		

6 Hazard Identification and Risk Assessment

6.1 Risk Methodology

LSC has adopted a risk assessment methodology that is adapted from the "Guideline for the preparation, review and audit of drinking water quality management plans including supporting information, October 2022" documentation provided by the Regulator. The methodology differs from the published version in that the consequence and uncertainty definitions have been tailored to more accurately reflect the circumstances at LSC. The methodology and definitions also vary from Council's Enterprise Risk Management Procedure to be better suited to this specific risk assessment activity.

Table 4 Risk Assessment Definitions and Descriptors

Likelihood	Descriptor	
Almost Certain	Occurs more often than once per week	
Likely	Occurs more often than once per month, and up to once per week	
Possible	Occurs more often than once per year, and up to once per month	
Unlikely	Occurs more often than once every 5 years, and up to once per year	
Rare	Occurs less than once every 5 years	
Consequence	Descriptor	
Catastrophic	Potential acute health impact, significant community illness (> 4 people) expected	
Major	Potential acute health impact, no community illness expected	
Moderate	Repeated breach of chemical health guideline value	
Minor	Isolated breach of chemical health guideline value, or widespread occurrence of parameter above aesthetic guideline	
Insignificant	Potential isolated occurrence of aesthetic parameter above guideline value.	
Uncertainty	Descriptor	
Certain	The processes involved are thoroughly understood and supported by very extensive on-site knowledge covering multiple drought and flood cycles, and/or high frequency (weekly or better) water quality monitoring data.	
Confident	The processes involved are well understood and supported by extensive on-site knowledge of more than one drought and flood cycle, and/or monthly water quality data	
Reliable	There is a good understanding of the process which is supported by quarterly water quality data and/or operational experience that covers drought and flood years.	
Estimate	The process is reasonably well understood, and/or data covers seasonal variations for drought and flood cycles.	
Unreliable The process is not well understood, and/or water quality data does cover seasonal variations for drought and flood years.		

Table 5 - Risk matrix

	Insignificant	Minor	Moderate	Major	Catastrophic
Almost Certain	Medium 6	High 10	High 15	Extreme 20	Extreme 25
Likely	Medium 5	Medium 8	High 12	High 16	Extreme 20
Possible	Low 3	Medium 6	Medium 9	High 12	High 15
Unlikely	Low 2	Low 4	Medium 6	Medium 8	High 10
Rare	Low 1	Low 2	Low 3	Medium 5	Medium 6

Medium and low risks are considered acceptable from a public health perspective. The rationale is that pathogen risks are acute and must retain major or catastrophic consequences, and as a result, Medium reflects the achievable risk in well-managed systems.

6.2 Risk Assessment Team

The hazard identification and risk assessments were reviewed and updated at a risk workshop held in August 2024, by a team consisting of:

Table 6 - Risk assessment team

Table 6 - Nisk assessi			B. L.P. H. M. Br. I	
Attendee	Title	Years of experience in Livingstone/ Water Industry	Public Health Risk Training / Experience	
Glen Harsh	Coordinator Water & Sewerage Operations	2 / 35	Risk assessment training and significant experience	
Michael Dalton	Technical Specialist	11 / 25	Formal training and involved in previous 2014 & 2020 risk assessments	
John Massingham	Principal Process Systems Technician	11 / 25	Involved in previous 2014 & 2020 risk assessments	
Peter Stapleton	Coordinator Water and Wastewater Process Operations	4 / 21	Risk assessment training and significant experience	
Chris Hocking	Manager Water and Waste Operations	3 / 27	Risk assessment training and significant experience	

6.3 Hazard identification and Unmitigated Risk Assessment

Biological, chemical, physical and whole of system hazards have been identified, and the sources of hazards have been considered for all water supply schemes. Consideration is then given as to whether the hazard is equally relevant to all schemes. Separate line items are included where the sources of hazards have a different relevance to a particular scheme.

Note: for the Caves, Nerimbera and Pipeline, the unmitigated risk is the risk for the source water for LSC – in these cases, this is the treated water from Glenmore WTP.

For each hazard, the <u>unmitigated</u> public health consequence, and the likelihood of the hazard causing that consequence in the absence of any preventative measures implemented by LSC

were evaluated. Using the risk matrix above, the <u>unmitigated risk</u> to the scheme was calculated.

Where a hazard is considered as potentially relevant to the scheme (i.e. the unmitigated risk was medium or above), the preventative measures in place to manage the hazard have been identified, and the <u>mitigated risk</u> calculated by the methodology identified below. Mitigated risk assessments are included on a scheme-by-scheme basis in the following sections. Unmitigated risks that are considered low are not progressed through to the mitigated risk assessment. Where mitigated risks are unacceptable, risk management improvement items to manage the risk have been identified and prioritised.

Table 7 - Hazard Identification - all schemes

Hamand	0	Unmitigated (Maximum) Risk		11	Comments			
Hazard	Sources of Hazard	Consequence	Likelihood	Risk	Uncertainty	Comments	Treatment Barrier/s	
Aluminium	Overdose/underdose	Minor	Unlikely	Low 4	Reliable		Operational procedures	
Bacteria/Virus (Network)	Backflow, network contamination	Catastrophic	Unlikely	High 10	Reliable	Potential risk at Lammamore reservoir due to low turnover.	New connections have backflow prevention. Valving re- configuration at Lammamore reservoir to improve turnover occurring in FY 2025	
Bacteria/Virus (Glenmore)	Failure to disinfect, reservoir/ mains contamination	Catastrophic	Rare	Medium 6	Confident		Managed by FRW (conventional treatment, SCADA) - more WQ monitoring now	
Bacteria/Virus (Marlborough)	Farming, weather event, mains contamination	Catastrophic	Possible	High 15	Estimate	Bores are checked quarterly for security and bore housing integrity.	Disinfection	
Bacteria/Virus (Woodbury)	Sewage discharge, farming, recreational activities, weather event, reservoir/ mains contamination	Catastrophic	Likely	Extreme 20	Reliable	Risk is based on the broader catchment, 1.2GL off-stream storage always used - likely to result in die-off. This is taken into account with residual risk	Retention in Off-stream storage, Disinfection	
Chemical	Backflow	Moderate	Unlikely	Medium 6	Reliable		New connections have backflow prevention	
Chlorate	Chemical breakdown	Moderate	Possible	Medium 9	Estimate	0.8mg/L has been identified as a required reporting limit by Queensland Health.	Chemical management by diluting sodium hypochlorite with water to reduce chlorate formation.	
Chlorine	Overdose	Moderate	Possible	Medium 9	Reliable		Operational procedures	
Colour	Naturally occurring	Minor	Almost Certain	High 10	Certain	Tannins in Water Park Creek are constant	Coagulation, Powdered Activated Carbon	
Cyanobacteria (Glenmore)	Breakthrough WTP	Minor	Unlikely	Low 4	Confident		Managed by FRW (conventiona treatment, SCADA)	
Cyanobacteria (Woodbury)	Minimal runoff and elevated nutrients result in algal blooms	Minor	Likely	Medium 8	Confident	Kelly's storage has had algal blooms	Filtration, PAC dosing, algae testing	
Cyanobacterial toxins (Woodbury)	Algal blooms	Major	Possible	High 12	Reliable		Powdered Activated Carbon, chlorine oxidation	
Cyanobacterial toxins (Glenmore)	Algal blooms	Major	Rare	Medium 5	Reliable	Multiple years of treated water data	Powdered Activated Carbon, chlorine oxidation	
Disinfection byproducts	Elevated organics and long detention times	Moderate	Unlikely	Medium 6	Confident		Operational procedures, flushing. RRC have installed a chlorine dioxide system	

Hanand	0	Unmitiga	ated (Maximur	n) Risk	Unacutainte	Comments	Treatment Barrier/s	
Hazard	Sources of Hazard	Consequence	Likelihood	Risk	Uncertainty	Comments		
Failure of supply	Malfunction, power outage, flood, fire	Major	Unlikely	Medium 8	Estimate		Availability of spare parts, generators at key infrastructure.	
Hardness/ TDS (Marlborough)	Natural geology	Minor	Almost Certain	High 10	Certain	TDS is aesthetic, not a public health risk	Reverse Osmosis	
Hardness/ TDS (Woodbury)	Natural geology, mine releases	Minor	Rare	Low 2	Certain	TDS is aesthetic, not a public health risk	Source control	
Hardness/ TDS (Glenmore)	Natural geology, mine releases	Minor	Unlikely	Low 4	Certain	TDS is aesthetic, not a public health risk	Source control	
Heavy metals	Mining activities, natural geology, cattle dips	Moderate	Unlikely	Medium 6	Reliable		Source control, Coagulation	
Heavy metals (Marlborough)	Natural geology	Moderate	Rare	Low 3	Reliable	Elevated TDS, but heavy metals concentrations acceptable	Source control, Coagulation	
Hydrocarbons	Road runoff, spill, road accidents, infiltration through pipes	Moderate	Rare	Low 3	Confident	Sampling data.	Selective extraction	
Iron	Natural geology, sediment	Minor	Unlikely	Low 4	Reliable	Depth sampling indicated stratification, offtake above that level.	Source control, oxidation, flushing	
Manganese (Woodbury)	Natural geology, storage overturning	Moderate	Rare	Low 3	Confident	Not seen in over 20 years In Kelly's Offstream storage.	Source control, oxidation, flushing	
Manganese (Glenmore)	Natural geology, storage overturning	Moderate	Rare	Low 3	Confident	0.41mg/L measured in treated water at the time of TC Marcia - big issues in the system at the time (10 years ago)	Conventional treatment, potentially changes made by Rockhampton (chlorine dioxide)	
Operator error	Untrained/fatigued/accident	Catastrophic	Possible	High 15	Reliable	In last 10 years have had one critical incident arising from operator error combined with hardware failure	Trained staff, staff development	
Opportunistic Pathogen (Naeglaria fowlerii)	Temperature, mains contamination, inadequate disinfection residual	Major	Rare	Medium 5	Estimate	Above ground pipe from Rockhampton into Mt Charlton Res and stop/start flow – re- chlorination afterward	Disinfection	
Other chemical contamination	Treatment chemical contamination	Moderate	Rare	Low 3	Reliable		Chemicals certified for use in drinking water	
Oxygen	Stagnant water, long transport times	Minor	Rare	Low 2	Confident		Nil	
Pesticides (Glenmore)	Agriculture, horticulture	Minor	Rare	Low 2	Reliable	No values above health guideline	PAC	

	0	Unmitigated (Maximum) Risk				0		
Hazard	Sources of Hazard	Consequence	Likelihood	Risk	Uncertainty	Comments	Treatment Barrier/s	
Pesticides (Woodbury)	Agriculture, horticulture	Minor	Unlikely	Low 4	Reliable	Minimal agriculture in this catchment	PAC	
pH (high or low)	Dosing failure, raw water quality	Minor	Possible	Medium 6	Confident		Operational procedures	
Protozoa (Glenmore)	Filter breakthrough > 1 NTU, reservoir cont	Catastrophic	Rare	Medium 6	Certain		Managed by FRW (conventional treatment, SCADA)	
Protozoa (network)	Network contamination	Catastrophic	Rare	Medium 6	Certain		Upstream Treatment, maintenance of chlorine residuals.	
Protozoa (Marlborough)	Farming, weather event, mains contamination	Catastrophic	Unlikely	High 10	Confident		Infiltration into aquifer (natural attenuation), 5 µm filters and RO treatment	
Protozoa (Woodbury)	Farming, recreational activities, Septic systems, weather event, reservoir/ mains contamination, animals in catchment	Catastrophic	Likely	Extreme 20	Reliable	Testing has not detected protozoa, but limited samples, and probable sources	Catchment management, Coagulation/Flocculation, Filtration	
Radioactive elements	Natural geology	Moderate	Rare	Low 3	Confident		Historical data indicates this is not a significant hazard	
Taste and odour	Algae blooms	Minor	Almost Certain	High 10	Certain		PAC	
Temperature	Seasonal	Insignificant	Unlikely	Low 2	Confident		Nil	
Terrorism /sabotage	Various, including cybersecurity	Catastrophic	Unlikely	High 10	Reliable	Has been an increase (nuisance/vandalism) recently in Rockhampton, but not targeting water quality	Physical and cyber security measures	
Turbidity	Storms, flooding	Minor	Likely	Medium 8	Confident		Coagulation, filtration	
Turbidity (network)	Reservoir sediment, sloughing in pipes	Minor	Likely	Medium 8	Reliable		Coagulation, filtration	

Relevant hazards and unmitigated risks of <u>medium and above</u> that are identified in this table are carried forward to the scheme based mitigated risk assessments.

7 Operational and Verification Monitoring

7.1 Operational monitoring

LSC undertakes operational monitoring to confirm that the preventative measures are implemented and effective for each of the schemes. Operational monitoring includes daily testing at the Woodbury WTP, as well as all Supervisory Control and Data Acquisition (SCADA) monitored processes, and site inspections of bores, dams and reservoirs. The operational monitoring details are stated individually in the scheme specific sections.

Typically, a large proportion of the operational monitoring is managed using SCADA, although some water quality testing at the WTP is also considered to be operational. SCADA limits are set up with a target level and target range. Alarms occur when the parameter is outside the target range, and operators will take necessary actions to bring the process within the target range. Alarms are set to allow an operator to correct any issue rapidly, and before the issue escalates. Within the context of the management plan, the typical target ranges are indicated; however, as these operational limits necessarily change (e.g. coagulant dose rates) these values should not be considered fixed, so as to allow operational flexibility.

The critical SCADA limits for ensuring risks are managed are the outer acceptable limits (e.g. the high-high and low-low SCADA alarms). These limits do not change due to operational changes.

Many of the high-high and low-low critical alarms result in the WTP shutdown process to prevent poor quality water reaching the consumers. Where plant shutdown occurs, an operator identifies and corrects the cause of the issue before restarting the WTP.

The focus of online monitoring and automatic shutdowns is on chlorine and turbidity, in recognition of guiding principle 1 of the Australian Drinking Water Guidelines 2011 (NHMRC) "the greatest risks to consumers of drinking water are pathogenic microorganisms". By focusing on filtration and disinfection effectiveness, LSC is managing the risk of pathogenic microorganisms.

7.1.1 Operational Procedures

LSC continues to develop further work instructions and operational procedures. These are outlined in the ongoing Risk Management Improvement Program (RMIP).

A list of existing operational documentation including work instructions, plans, procedures, guides and attachments has been provided in Appendix B.

7.2 Verification monitoring:

Verification monitoring is undertaken to demonstrate that the water quality produced was acceptable. This monitoring is "after the fact" testing and while corrective actions can be taken based on the results, drinking water has been delivered to customers prior to this sampling being undertaken.

LSC have installed specific locked water sampling points that facilitate sample tap flaming and collection of representative samples.

Sampling locations are listed in Table 8 below. Sample locations were selected to be representative of the water quality in each zone and include higher risk locations (either on the basis of historical issues, population at risk, or longer water ages).

Most verification monitoring samples are sent to external laboratories for analysis. The Technical Specialist reviews the results immediately upon receipt, and the incident and emergency response plan is activated if any parameters are above the water quality criteria.

Table 8 - Potable Water Sampling Points

Scheme	Reservoir Zone	Site Cod e	Location	Monitorin g Frequency				
		SF1	Anzac Pde (Council Office)					
		SF2	Pacific Heights Rd (St Benedict's Sch)					
	St Faith's	SF3	Arthur St (St Ursula College)					
		SF4	Adelaide Park Rd (St Faiths Reservoir)					
		SF5	Rockhampton Rd	Sites				
	Taranganha	TB1	Matthew Flinders Dr (Cooee Bay Pool)	rotated –				
	Taranganba	TB2	Poinciana Ave (Poinciana Park)	one per				
		LM1	Scenic Hwy (Lammermoor Beach)	week				
		LM2	Vin E Jones Memorial Dr (Roslyn Bay)					
	Lammermoor	LM3	Scenic Hwy (Causeway)					
Capricorn Coast		LM4	Scenic Hwy (Kinka)					
Coast		LM5	Yeppoon Hospital]				
		EP1	Pattison St (Police Stn)	Sites				
	Emu Park	EP2	Haven Rd (Tanby Point)					
		EP3	Svendsen Rd (Zilzie)	rotated – one per				
	Keppel	KS1	Schofield Pde North (Musa Dr)	week				
	Sands	KS2	Schofield Pde South					
	Yeppoon Pipeline	YP0	Yeppoon West Valve Facility	Sites				
		YP1	Sawmill Bondoola Road	rotated –				
		YP2	Dairy Inn Road	one per				
		YP3	Boundary Reservoir (Iron Pot Road)	fortnight				
		ML1	Magog Road (Marlborough School)	Sites				
Marlboroug h	Marlborough	ML2	Railway Street (Marlborough Park)	rotated – one per month				
		MC1	Rossmoya Rd (The Caves Pub)					
		MC2	Glendale Rd	Sites				
	Mount	MC3	Bruce Hwy (Etna Creek Prison)	rotated –				
The Caves	Charlton	MC4	Emerson Dr (Glenlee)	one per month				
		MC 6	MC6 124 Barmoya Rd (The Caves Reservoirs)					
		MC5	Mount Charlton Reservoir	Weekly				
		NR1	Lakes Ck Rd (Boundary)	0.7				
Nerimbera	Nerimbera	NR2	Black Creek Road	Sites rotated –				
Hellinbera	Nerimbera	NR3	Lot 1, St Christophers Chapel Road	one per Week				

7.2.1 Escherichia coli monitoring schedule

E. coli is monitored at a frequency that meets the Public Health Regulation requirement for the population served. Each scheme has been considered separately and meets the Public Health Regulation in its own right.

As previously noted, dedicated sample points have been installed at locations throughout each water supply scheme. Sample locations are rotated according to an operational schedule that is updated annually. Sample locations were selected as they are representative of the water supplied to Council's customers, but also samples areas that may be subject to specific water quality concerns (for example, the Correctional Centre, which can experience low residual chlorine concentrations).

When *E. coli* samples are collected, a field test of the free chlorine is undertaken, and a second water sample collected for analysis of pH, colour, turbidity and conductivity at the LSC laboratory.

Samples are sent away for analysis at an external NATA accredited laboratory. The sampling schedule is as per the Monitoring Frequency column in Table 8. The specific rotation schedule is updated annually to identify the specific sampling weeks for the next calendar year. An appropriate number of samples will be collected to meet the minimum PHR requirements, and samples rotated through the sampling sites. Additional samples will be taken if the Technical Specialist is concerned about the water quality at any particular location. This may be in response to customer complaints, or identification of low chlorine residuals.

In addition to this, council also undertakes weekly raw water *E. coli* monitoring at the Woodbury and Marlborough water treatment plants. This provides data to support councils catchment characterisation and informs operators on the microbial load on the treatment plant.

7.2.2 Other Monitoring Parameters

Other water quality parameters are tested either monthly, 3 monthly or annually. Samples are sent away for analysis at an external NATA accredited laboratory. The chosen parameters reflect the hazards and risks for the water supply schemes. Parameters include:

Standard Water Analysis – Monthly - Woodbury and Marlborough - raw and potable water.

- Quarterly - A network study taking quarterly samples for standard water analysis for 12months within the extremities of the drinking water network will be undertaken starting August 2025. Based on these results, it will be determined the future requirements for continuing with this sampling.

This includes the following parameters:

Alkalinity, chloride, colour, EC, nitrate, sulphate, fluoride, aluminium, copper, iron, lead, manganese, zinc, calcium, magnesium, potassium, sodium, pH, TDS, total hardness, and turbidity.

These parameters provide a background water quality profile predominantly to verify that water quality meets aesthetic guidelines, and on this basis, a monthly frequency is believed to be sufficient.

<u>Blue Green Algae</u> – Risk based, typically monthly in summer, Woodbury raw water. Algae monitoring can assist in making operational decisions, however in practice, powdered activated carbon is dosed year-round to manage taste and odour concerns, and the conventional treatment process (coagulation, sedimentation, filtration and chlorination) is sufficient to remove or inactivate both algal cells and toxins.

<u>Total Organic Carbon</u> – 3 monthly - Woodbury and Marlborough - raw and potable water. TOC data provides background data on the potential for disinfection by-product formation, but also raw water quality more generally.

<u>Pesticides</u> – Annually - Woodbury and Marlborough - raw water. With no detections in any scheme to date, annual monitoring for pesticides is believed to be appropriate.

<u>Cryptosporidium</u> and <u>Giardia</u> – Annually - Woodbury WTP - raw and potable water. Monitoring for these pathogens is undertaken annually to gradually build a dataset, noting the high cost and relatively poor enumeration performance of the test method (particularly for *Cryptosporidium*).

<u>Trihalomethanes & chlorate</u> – 3 monthly - Woodbury and Marlborough - reticulated water supply. Sample locations SF2, KS2, MC1, NR3 & ML1 (e.g. locations considered to be the highest risk). Quarterly is considered to be appropriate for the verification of THM and chlorate levels in drinking water, and no exceedances of the water quality criteria have been identified in the data summarised in this DWQMP.

<u>Heavy metals</u> – Annually - Woodbury and Marlborough - raw and potable water. Annual monitoring is deemed to be appropriate for heavy metals given the very low likelihood of their occurrence in drinking water.

- Quarterly - A network study taking quarterly samples for heavy metals for 12months within the extremities of the drinking water network will be undertaken starting August 2025. Based on these results, it will be determined the future requirements for continuing with this sampling.

This includes the following parameters:

Arsenic, cadmium, chromium, nickel, selenium, mercury

Raw and potable water samples are taken at the water treatment plants. This level of monitoring, and the selection of parameters is considered to be sufficient for these schemes given the limited number of water quality incidents detected by LSC, the mostly protected nature of the Water Park Creek catchment, and the limited likely risks to the quality of the Marlborough aquifer. If additional hazards to the schemes are identified, other parameters may be added to the monitoring schedule.

LSC undertook radiological testing of the water supplies in 2014 (all results are below detection limit), and again in 2025 and will continue to monitor these on a 5 yearly basis.

Under the bulk water agreement, FRW provides monthly physical and chemical water quality monitoring data for the Glenmore WTP raw and treated.

8 DWQMP Emergency Response Plan

LSC DWQMP operates on a 3 level Emergency Response Plan. The levels are outlined below:

Table 9 - Emergency Response Levels

Response Level	Description of Level	Typically Identified by	Communication and Response Management	
Level 3 Disaster	Declared Disaster	Manager Water and Waste OperationsCEO	CEO External Agencies	
Level 2 Incident or Emergency	 Potential public health risk, exceedance of water quality criteria, major loss of supply (e.g. widespread loss for > 6 hours) cybersecurity threat 	 WTP Operators Coordinator Water and Sewerage Process Operations Critical and operational Control Point Procedure Technical Specialist 	 Manager Water and Waste Operations potential CEO Regulatory reporting. LSC Customer Service and Media team 	
Level 1 Operational Action	 Operational exceedances, minor loss of supply, other issue not considered to be a potential health risk 	 WTP Operators or Critical and operational Control Point Procedure Technical Specialist 	 Coordinator Water and Sewerage Process Operations Technical Specialist 	

8.1 Detail of Incidents and Response Levels:

8.1.1 Level 1 Operational Action

At Level 1, operational actions are required to manage the issue and prevent escalation.

Issues at this level are normally identified through operational monitoring and through the operational Alert limit identified in the MSP.064 "Critical and Operational Control Point Procedure". In many cases, SCADA alerts will provide the first indication of a problem.

Corrective actions will be taken to ensure processes are brought back to target levels, a note made in the WTP diary (WTP exceedances) and the Coordinator Water and Sewerage Process Operations informed. Where the issue is identified by the Technical Specialist, the issue and corrective actions are recorded in their diary (e.g. flushing of dirty water from reticulation).

Note: Exceedances of upper and lower alarms that result in the WTP shutdown process are considered to be within the scope of normal operation of the management plan, and do not automatically escalate beyond Level 1 unless the situation warrants. For example, a high-high chlorine alarm that shuts down the treatment plant **before** the chlorine level exceeds the water quality criteria is dealt with as a Level 1 action. If the water quality criteria are exceeded, or a widespread outage is for an extended period, the issue is a Level 2 incident.

8.1.2 Level 2 Incident or Emergency

At Level 2, there is a potential for an adverse public health impact.

These issues are typically identified through either operational or verification monitoring and through the Critical limit identified in the MSP.064 Critical and Operational Control Point Procedure of the processes and water quality, or where there has been a significant widespread treatment or reticulation network failure resulting in the loss (or likely loss) of water supply for a period >6 hours. Alternatively, ICT Services or the Process Systems Technician may identify a cyber security breach or threat. When identified, these issues are escalated to the Coordinator Water and Sewerage Process Operations, or alternatively the Technical Specialist and/or Manager of Water and Waste Operations if the Coordinator Water and Sewerage Process Operations is not available.

Appropriate corrective actions have been identified in the MSP.064 Critical and Operational Control Point Procedure and will be implemented as soon as practicable to minimise the effect of the incident. Examples for typical actions that we will normally take for the detection of a parameter above the water quality criteria (including *E. coli*, and chlorate >0.8mg/L) follow. For cyber threats, ICT Services will take a key role in the incident management process.

Level 2 incidents and emergencies are reportable to the Regulator. The Technical Specialist or Coordinator Water and Process Operations will inform the Regulator immediately after the provider becomes aware of an incident. Advice may be directly sought from Queensland Health if required. A report will be sent to the Regulator with findings after the event.

Resampling: Where a water quality criterion has been exceeded, LSC always assumes that the failure is real and will respond as such. Due to the assumption that the failure is real, the resample is collected <u>after</u> any immediate corrective actions have been completed (e.g. after re-establishing disinfection or after flushing).

By resampling after the corrective actions have commenced, the resample results help quantify the effectiveness of the corrective actions that have been taken to date.

Council will contact high risk customers, as identified in Appendix A by appropriate means (letter drop, phone call, personal visit) if required.

8.1.3 Level 3 Declared Disaster

This level is reached when the Chief Executive Officer (CEO) of Council activates the Disaster Management Plan or a Disaster is declared by the State Government.

When a Disaster Management Group is stood up, drinking water quality management actions will be taken as necessary to respond to the requirements of the Disaster Coordinator.

While every effort will be made to continue to implement the DWQMP, Disaster Management actions may take precedence. Where this occurs, LSC will inform the Regulator immediately after the provider becomes aware of an incident. A report will be sent to the Regulator with findings after the event.

Scenarios where this may occur include major events such as imminent cyclones, bushfires and floods. At such times, communications can be difficult, and actions may be required to immediately reduce threats to human life. Actions that contradict the DWQMP would not normally be taken, except under advice from appropriate and relevant authorities.

8.2 Multiple entity arrangements

The Capricorn Coast, Caves and Nerimbera Schemes are multiple entity schemes. In all schemes, water quality is monitored close to the point of handover, as per the verification monitoring programs of both providers (refer to section 6.2 for details of LSC's verification monitoring). In the case of the Boundary Reservoir (Rockhampton to Yeppoon Pipeline), online monitoring of chlorine residual is available to both providers.

Where the water quality at the point of handover does not meet acceptable standards (which are defined in the Bulk Water Supply Agreement to include both health and aesthetic parameters), the Coordinator Water and Sewerage Process Operations, Technical Specialist, or the Manager Water and Waste Operations will contact the Water Quality Officer or the Manager at FRW to inform them of the issue and request corrective actions. The communication protocol is formalised in the Operating Protocols, which are an appendix to the Bulk Water Supply Agreement between LSC and FRW.

If the quality of water supplied does not meet the water quality criteria for the service, the Regulator will then be informed of the exceedance and will be advised as to what actions are being taken to investigate and/or correct the issue.

Where a water quality issue is identified within the reticulation network, but not at the point of supply, this is not a multiple entity situation, and LSC will manage the incident accordingly. In some instances, Council may choose to inform Rockhampton Regional Council (RRC).

The Bulk Water Supply Agreement between FRW (RRC) and LSC indicates that both parties will respond to ensure that water quality issues can be managed. The Bulk Water Supply Agreement is financially reviewed annually and renewed 5 yearly.

8.3 Example incident response

8.3.1 Exceedance of Water Quality Criteria

Verification monitoring data is sent to the Technical Specialist and the Coordinator Water and Sewer Process Operations and reviewed as soon as possible. Where water quality does not meet the water quality criteria, the following steps are normally undertaken:

1) Define the extent of the problem:

Determine the potentially affected locations – e.g.

- · whole scheme,
- whole zone, or
- the end of a reticulation line

2) Define the water quality at the time of sampling:

Confirm the following at the sampling location, and upstream of the sampling location (e.g. an upstream reservoir, a point of handover, or WTP):

- disinfection residual,
- turbidity and
- pH at time of sampling
- 3) Identify if any parameter is outside the normal range for this location.
- 4) Confirm correct operation of LSC water treatment processes in relevant scheme (for example):
 - Reverse Osmosis (Marlborough)
 - Coagulation/Filtration
 - pH adjustment

- Disinfection
- Redosing facilities

5) Consider need/ ability to isolate source.

(e.g. could a potentially contaminated reservoir by bypassed, should the Woodbury water treatment plant be shut down, or should the Rockhampton-Yeppoon pipeline be shut down?)

- 6) Consider ability to flush reticulation network.
- 7) Operator or Technical Specialist to go on site to confirm turbidity, disinfection and pH levels
- 8) Flush if appropriate:
 - If any water quality parameter is outside the normal range for that area, flush until residual disinfection is re-established.
 - For E. coli detection at any sample location, flush to achieve disinfection residual of ~ 0.5 mg/L

9) Resample

These incidents are reported to the Regulator immediately after the provider becomes aware of an incident. A report will be sent to the Regulator with findings after the event. As many of the above steps are undertaken as possible prior to reporting so that relevant information can be provided. Upon resolution of the incident, the causes for the failure are identified, and the relevant aspects of the DWQMP are reviewed to determine whether the DWQMP is appropriate to prevent the issue from reoccurring.

9 Employee Awareness and Training

9.1 Training

9.1.1 Formal training:

Water treatment plant operators are generally trained to NWP30219 Certificate III in Water Industry Operations or higher. Exceptions can occur where trainees or new staff are employed. In these cases, formal training for those staff members is sourced to achieve these training levels within a reasonable timeframe.

9.1.2 Informal training:

Start-up discussions/meetings occur most mornings where the Coordinator Water and Sewerage Process Operations outlines the key tasks. Toolbox meetings occur monthly, and any water quality issues are discussed in these meetings. Where new processes are implemented, these are discussed during these meetings or during reviews of the Quality Assurance Documents.

9.1.3 Employee awareness of DWQMP

The DWQMP is an important document. LSC undertakes yearly 'Take 5' toolbox talks with all Water & Sewer staff (Waste Team excluded) which covers the key aspects of the DWQMP that relate to staff responsibilities. Attendance is logged for staff training records. The Water and Sewer team can access the DWQMP electronically. It is also discussed on engagement of a new starter through a quality assurance awareness session that goes through important documents that pertain to the staff members' area. This awareness session is also logged for staff training records.

10 Community Engagement

10.1 Consultation and Communication

LSC publishes the DWQMP report (annual report) on the council website to ensure customers are informed of water quality and its management. Council conducts open days to educate the community about water treatment and quality and carries out school / university tours of our water and sewer treatment plants.

Council engages catchment management groups, such as the Byfield Community Reference Panel who undertake catchment works in the Water Park Creek area.

Council informs customers of any major works that will disrupt their services and will publish water quality advisories on the council website as necessary.

11 Research and Development

11.1 Investigative studies

Where LSC is concerned about unknown risks, appropriate monitoring programs are initiated and undertaken.

Monitoring for emerging hazards is not included in the verification monitoring program but may be undertaken as deemed necessary. If the water quality criteria are ever found to have been exceeded, the incident and emergency response will be implemented. LSC has recently tested for per- and poly-fluoroalkyl substances (PFAS) with nil detections recorded in both raw & treated water.

11.2 Validation

LSC has begun validation of the key water treatment barriers and is continuing to gather information to justify the assumptions used. A summary of the current state of validation is provided below:

- 1) Woodbury WTP Disinfection at a low chlorine of 0.5mg/L (auto-shutdown level), as well as lowest clear water tank level of 84.66% (of 1.5ML total volume), and maximum outflow rate of 196L/sec, a chlorine concentration time (CT) of 16.2mg.min/L is achieved at the clear water tank outlet; assuming a baffle factor of 0.1 (poor baffling). The baffle factor has not been validated, and there has been some suggestion that 0.1 may be more appropriate. However, given that the water from the clear water tank flows through another 0.22ML tank, it is considered that this is an appropriate estimate in the absence of tracer study data. Furthermore, no in-pipe CT has been calculated (though it is noted that the first customer is located approximately 300m downstream of the WTP).
- 2) Marlborough WTP Disinfection at a low chlorine of 0.3mg/L, low clear water tank level of 90% (of 135kL total volume), and maximum outflow rate of 4L/sec, a CT of 45.6mg.min/L is achieved at the clear water tanks outlet; assuming a baffle factor of 0.1 (poor baffling). There is no ability to automatically shut down the Marlborough WTP without putting the town out of water, so responses to low critical limit alarms must occur quickly. Furthermore, any mains break or mains flushing activity has the potential to increase the flow rates to significantly higher than 4L/sec, meaning that CT could become compromised under these conditions.

11.3 Design of equipment

Any new equipment or process will undergo appropriate design and testing prior to implementation.

12 Documentation & Reporting - Quality Management System

Several different software systems are used to capture, manipulate and archive information relating to drinking water. These systems are accessible to all relevant staff through Council's online IT services. A listing of the software systems that are currently in use is provided below. Operations & Maintenance Manuals are stored in hardcopy. The group responsible for maintaining and updating each software system is also indicated.

A list of Work instructions, Procedures, Plans, Attachments and guides relevant to the implementation of this DWQMP are included in Appendix B. These documents are managed under LSC's Quality Management System (QMS) based on the ISO 9001:2015 / QMS Model. These documents are updated on a 3 yearly cycle, if an existing process has changed or a new one has been introduced. LSC's QMS is externally audited to maintain a quality improvement cycle of Plan, Do, Check, Act as part of the systems continuous improvement process.

Information is made available or distributed to all staff via Toolbox Meetings held each month or through specially organised meetings or training workshops as required.

System	Function	Group Responsible
Objective ECM	Archiving of all QMS business critical documents	LSC
Objective Low	including internal and external correspondence	Administration
Conquest / WAM	Management of all asset inventory, maintenance	LSC Assets
Conquest / WAIVI	management information and all O&M Manuals	Management
Pathway	Management of all customer engagements	LSC
Fattiway	including complaints and information requests	Administration
Arc Portal (GIS)	Management of Council-wide Arc Portal and asset	LSC Assets
Alc Foltal (GIS)	location information	Management
	Recording and controlling of all on-line monitored	LSC Water
Experion SCADA	operational data for drinking water infrastructure	and Waste
	operational data for drinking water infrastructure	Team
SWIMLocal and	Management of all water quality monitoring	LSC Water
SWIMReports	information. Information is also backed-up and	and Waste
Swiivineports	stored in ECM & is accessible by all relevant staff.	Team
	Recording of all on-line monitored operational data	LSC Water
SWIMOPERATIONS	for drinking water infrastructure	and Waste
	ioi dillikilig water lilliastidetule	Team

All records are kept in accordance with the *Public Records Act 2002* requirements.

12.1 Operational monitoring data

Online plant operational details are recorded in SCADA.

Operational details such as the total WTP production, and the daily chemical usage and remaining stock are recorded in the Treatment Plant Compliance and Performance spreadsheet.

Daily testing results for pH, turbidity, conductivity, alkalinity and temperature are recorded for the raw water, with the same parameters and free chlorine also measured in the treated water and at St Faiths reservoir. The alum dose rate and raw water inflow rate are also recorded.

Additional plant operational details are documented in the WTP diary, including details of when filters are manually backwashed, or plant maintenance undertaken. Information from the test

log and operators log is then transferred to the "Compliance and Reporting" Excel file saved on W:drive, and is accessible by all relevant staff.

The Technical Specialist (or Coordinator Water and Sewerage Process Operations) also records operational details such as sampling date, locations, free chlorine residual, turbidity, colour and electrical conductivity which is then all entered into SWIMOps program.

Calibration checks of instrumentation used in the water treatment process are stored within the Conquest Maintenance System.

12.2 Verification monitoring data

All laboratory results from verification monitoring are collated and saved in Councils record management system. These results can be accessed by the WTP Operators if necessary.

12.3 Cyber security

LSC ensures the integrity of its information and control systems within a process that has been formalised into the MSP.064 SCADA Cyber Security Procedure. ICT Services are responsible for the broader Council network architecture protections (e.g. firewalls, configurations between different systems, provision of network access) while the Principal Process Systems Technician is responsible for maintaining backup copies of the various programmable logic controllers, ensuring hardware is functioning correctly, and liaising with ICT Services as required.

13 Evaluation and Audit

13.1 Long term evaluation of results

LSC assesses verification monitoring data on receipt of the results. Results are automatically sent to the SWIM software database, with reports and dashboards developed to allow for the required data analysis as required. These reports are added to on an as-need basis.

The Technical Specialist compares the current result to the long-term average result and investigates if there are significant unexplained deviations outside the normal range. Where parameters exceed the water quality criteria, the Incident and Emergency Response plan is followed.

13.2 Audits

Audits of the drinking water quality management plan are required under section 108 of the Act. Internal Audits are performed by the Infrastructure Quality Assurance Team. LSC also undertakes regulatory audits in accordance with the requirements of the Regulator. 4 yearly external audits and 2 yearly internal reviews.

14 Review and Continual Improvement

Council formally reviews the effectiveness of the management plan in accordance with the regulatory requirements. Primarily the review is to determine the relevance of the DWQMP.

Council also reviews all drinking water incidents following resolution, and in conjunction with regulatory reporting requirements, to determine the effectiveness of the management plan. If the management plan requires amendments, Council determines whether the amendment is urgent, and requires immediate attention, or whether the amendment should be made following the subsequent regular review. The need for any minor amendments will be discussed with the Regulator.

14.1 Water Quality Customer Inquiries & Complaints

For all customer enquiries received regarding drinking water aesthetics or quality (dirty water) in Councils declared water service areas, customer service lodge a request into Councils customer management software called Pathway under Request Code: PRWQUA - Process - Drinking Water Quality (Asset). Depending on the nature of the enquiry, it is then assigned to the appropriate officer (plumbers, water quality technical officer) to action. These actions also vary depending on the nature of the enquiry (health concern, discoloured water, taste and odour or other) and can include flushing and water testing (as per 03-WI.039 Water Mains – Flushing Procedure), customer visit, sampling and providing water quality data.

A summary of these water quality customer inquiries and complaints are shown in table 10 below and reviewed annually for each scheme as part of councils Drinking Water Service Annual Report to the regulator. As dirty water enquiries are a part of managing any network, this review considers any unexplained increases in drinking water aesthetics or quality compared to previous years, to help identify trends or emerging concerns that may require operational intervention. This intervention can also include adding further reticulation sites to councils three or six monthly flushing programs, as well as inclusion into the DWQMP RMIP.

Table 11 - Drinking Water Quality Customer Inquiries and Complaints.

	Customer Enquiries or Complaints - 5 years FY 20-24								
FY (Fiscal Year)	Drinking Water Supply Scheme	Health Concern	Dirty Water	Taste & Odour	Other				
2019-2020	Capricorn Coast	0	37	18	8				
2020-2021	Capricorn Coast	0	29	9	6				
2021-2022	Capricorn Coast	0	32	10	14				
2022-2023	Capricorn Coast	0	27	8	1				
2023-2024	Capricorn Coast	0	58	12	4				
Total		0	183	57	33				
2019-2020	The Caves (Mt.Charlton)	0	0	0	0				
2020-2021	The Caves (Mt.Charlton)	0	0	0	0				
2021-2022	The Caves (Mt.Charlton)	0	0	0	0				
2022-2023	The Caves (Mt.Charlton)	0	0	0	0				
2023-2024	The Caves (Mt.Charlton)	0	3	3	0				
Total		0	3	3	0				
2019-2020	Nerimbera	0	1	0	0				
2020-2021	Nerimbera	0	0	0	0				
2021-2022	Nerimbera	0	0	0	0				
2022-2023	Nerimbera	0	0	0	0				
2023-2024	Nerimbera	0	0	0	0				
Total		0	1	0	0				
2019-2020	Marlborough	0	0	0	0				
2020-2021	Marlborough	0	1	0	0				
2021-2022	Marlborough	0	0	0	0				
2022-2023	Marlborough	0	0	0	0				
2023-2024	Marlborough	0	0	0	0				
Total		0	1	0	0				

Included in Councils Customer Service Standards (WMP.004 Customer Service Standards Water & Sewerage Services), is a target of <5 Water quality complaints per 1,000 connections. This is also reported on annually in the National Performance Reporting Statewide Water Information Management (NPR SWIM) system under NPR SWIM code C9, with council currently exceeding this standard with a result of 5.5 water quality complaints per 1,000 connections. This increase from previous years was attributed to dirty water complaints generated from bringing a newly replaced section of 450mm trunk main online in January 2024. The complaints went from an average of seven (7) per month to twenty (20). It was determined that after super-chlorinating, microbial testing and flushing, that the main was brought back on line too quickly. This caused the upstream and downstream sections from the new main to be scoured causing dirty water. Another error then occurred on another section of main when a scour valve was open too far, again causing scouring of the upstream section and further exacerbating the issue. At no stage was compromised water provided to customers, and further flushing alleviated the complaints. This has been entered into councils RMIP.

14.2 Risk Management Improvement Plan

Council uses the risk assessment process to identify the items that are essential to ensure risks to the service are lowered to acceptable levels. These items are included in the risk management improvement program (RMIP). The RMIP is considered by Council to be a highly changeable part of the management plan as items will be added and removed from the RMIP as necessary (for example, new items are added when identified, and any old items can be removed when completed, or when alternate solutions have been implemented that achieve the intended outcome).

The RMIP follows directly from the risk assessment, and items are recorded in the risk assessment for each scheme. A collated version of all RMIP items is provided below.

Table 12 Risk management improvement program

Table 12 Kisk I		improvement			Actions			
Item	Relevant Scheme(s)	Unmitigated Risk level	Mitigated Risk level	Immediate actions (31/03/2021)	Short Term (30/06/2021)	Long Term (30/06/2023)	Responsibility	Complete
Recontamination from supernatant	Capricorn Coast	Extreme	Medium	Install turbidity analyser on return line & develop protocol around high turbidity shutdown	Turbidity meter installed and automatic plant shutdown at greater than 10NTU.		Coordinator Water & Sewerage Process Operations	Yes
Coagulation failure (e.g. change of raw water quality)	Capricorn Coast	Medium	Low			Consider Installing ORP analyser at Woodbury WTP inlet	Technical Specialist	Raw water quality is very stable, ORP meter wouldn't tell you much. Have duty/Stby pumps & have plant alarms if we have a Loss of dosing pump; plant shut down if rapid mixer goes down.
Source water contamination / filtration	Capricorn Coast	Extreme	Medium	Review turbidity- based backwash triggers (e.g. >0.3 for 14mins if possible)	Consider installing a turbidity meter at the clarifier to provide advance warning of	Business case for CAPEX - structural works and filter media replacements Consider undertaking Cost-Benefit Analysis for	Coordinator Water & Sewerage Process Operations Coordinator Water & Sewerage	Project complete. High turbidity backwash initiated on refurbished filters. Complete. Due to high cost - UV not feasible and
				possible)	carryover	UV at Woodbury WTP	Process Operations	catchment category does not warrant it.
Failure filtration/ soda ash	Capricorn Coast	Medium	Low		Install duty/standby soda ash pumps at Woodbury WTP. Complete.		Coordinator Water & Sewerage Process Operations	Complete
Disinfection / underdosing	Capricorn Coast	Extreme	Medium		Investigate auto- removal of control system inhibit (e.g. when calibrating)	Look at including as part of filtration upgrade.	Coordinator Water & Sewerage Process Operations	Complete.

					Actions			
Item	Relevant Scheme(s)	Unmitigated Risk level	Mitigated Risk level	Immediate actions (31/03/2021)	Short Term (30/06/2021)	Long Term (30/06/2023)	Responsibility	Complete
Deliberate contamination (incl cyber security attacks with a physical element)	Whole of System	High	Medium		Develop scope of works for site security upgrades	Undertake site security upgrades. site security checked.	Manager Water and Waste	Complete. New automatic security gate installed and chemical shed locks re-keyed.
Change to SCADA limits resulting in compromised system operation	Whole of System	Extreme	Medium		Review SCADA access protocols to determine if any short-term improvements are available	Consider engaging an expert to undertake a cyber security review.	Manager Water and	Complete. SCADA access level access controls implemented as per MSP-056 SCADA Cyber Security.
Unauthorised remote access to systems leading to water quality impacts	Whole of System	High	Medium			Cyber security exercise ran in September 2022. Completed by JLT in 2024.	Waste Waste	Ongoing – Individual SCADA logins implemented. SCADA data sent via encrypted network. Password changes 2 Monthly.
Insufficient Operators available	Whole of System	Extreme	High		Prepare a business case for additional Operator(s). Business case.		Coordinator Water & Sewerage Process Operations	Complete. 2 x operators employed, Ongoing issue as operater shortage in industry
Source contamination	Marlborough	High	Low	Inspect bore heads and seal any identified gaps	Bore heads inspected and two (2) small gaps sealed.		Coordinator Water & Sewerage Process Operations	Complete / Ongoing
Failure of chlorine dosing	Marlborough	High	Low		Begin monitoring <i>E.</i> coli in raw water. Complete.		Technical Specialist	Complete
Recontamination of reservoirs/network (Mount Charlton)	The Caves	High	Low	Implement weekly verification monitoring at Mount Charlton Reservoir (<i>E. coli</i> and chlorine). Complete.	Address vermin proofing and reservoir integrity breaches upon inspections where a high risk is identified. Inspections initiated.	Replace roof structure and sheeting on Mount Charlton Reservoir (To be completed end of October 2022)	Manager Water and Waste	Complete. Roof replaced, vermin proofing rectified, and new dosing points installed.

					Actions			
ltem	Relevant Scheme(s)	Unmitigated Risk level	Mitigated Risk level	Immediate actions (31/03/2021)	Short Term (30/06/2021)	Long Term (30/06/2023)	Responsibility	Complete
Low chlorine residuals supplied by Rockhampton RC	Nerimbera and The Caves	High	Medium		Improved communication with FRW and regular reporting to build relationships.	Renegotiation of Bulk Water Supply Agreement in 2024 to increase chlorine residual levels in water supplied by FRW	Coordinator Water & Sewerage Process Operations	Ongoing. Supplied chlorine residuals still drop from time to time
Chlorine residuals in networks supplied by Rockhampton RC	Nerimbera and The Caves	High	Medium		Improved communication with FRW and regular reporting to build relationships.	Provide historic trends of chlorine residuals showing improvement over the last 18 months.	Coordinator Water & Sewerage Process Operations	Disinfection residual graphs will be included in next amendment of the DWQMP.
Bacteria/Virus (Network)	Backflow, network contamination	Extreme	Unlikely			Valving re- configuration at Lammamore reservoir to improve turnover occurring in FY 2025	Coordinator Water & Sewerage Process Operations	New connections have backflow prevention. Potential risk at Lammamore reservoir due to low turnover.
Reservoir CCP's	All Schemes	Medium	Low			Update document MSP064 to reflect CCPs apply for all reservoirs	Coordinator Water & Sewerage Process Operations	Complete. Document MSP064 has been updated.
Chlorine CCP Limits	All Schemes	Medium	Low			Update document MSP064 to make it clear that upper limits for chlorine is for to total chlorine, not free.	Coordinator Water & Sewerage Process Operations	Complete. Document MSP064 has been updated.
Customer complaints	All Schemes	Low	Low			Summarise customer complaints as reported in DWQMP annual reports	Coordinator Water & Sewerage Process Operations	Completed.
Catchment characterisation	Capricorn Coast & Marlborough	Medium	Low			Include catchment characterisation for Capricorn Coast & Marlborough Bores	Coordinator Water & Sewerage Process Operations	Completed.
Raw Water E. Coli	Capricorn Coast Marlborough	Medium	Low			Review of Raw Water E. Coli Sampling	Coordinator Water & Sewerage Process Operations	Completed.

PART 2 CAPRICORN COAST DRINKING WATER SCHEME

1 Overview of Scheme

The Capricorn Coast Scheme serves the communities of Yeppoon, The Causeway, Kinka Beach, Zilzie, Emu Park and Keppel Sands. Surf Lakes wave park is a major customer.

The Capricorn Coast Scheme is a multiple entity scheme that has 2 distinct water supplies. The first supply is Water Park Creek which is harvested into the Kelly's Offstream Storage. Water from this storage is conventionally treated and disinfected by the Woodbury Water Treatment Plant (WTP), which is operated by LSC.

Water from the Woodbury WTP is supplemented by a second water supply via the Rockhampton to Yeppoon Water Supply Pipeline. The ~40 km pipeline supplies conventionally treated water from Rockhampton Regional Council at their Glenmore (WTP).

1.1 Catchment Description

1.1.1 Water Park Creek

Water Park Creek drains the Byfield and adjacent areas within the Shoalwater Bay Military Training Area located along the coastal margin to the north of Yeppoon. The limited industrial, agricultural and other human activities that occur in the catchment mean that this catchment can almost be considered a protected catchment. This area to the north of Yeppoon receives higher rainfall than other parts of the region with average annual rainfall above 1500 mm. Most of this rainfall is received during the summer months. The heavy summer rainfalls and consistent rainfall throughout the year means that Water Park Creek usually maintains a flow all year round.

The catchment area is dominated by largely uncleared lowland and mountain areas to the north of the catchment, a line of sand dune areas along the coast to the east and pine forest plantations to the south. The heavily forested catchment and limited rural or urban development in the area helps to ensure a high quality of water in Water Park Creek. In the more mountainous areas, stands of tall eucalypt and other forest hardwoods dominate the ridge lines with softwood and rainforest vegetation types abundant around gorges and other watercourses. At lower elevations the uncleared areas consist of a mix of either hardwood forests on clay or loam soils and teatree and heath areas on the sandy soils nearer to the coast

Apart from the pine plantation activities, the catchment area is largely undeveloped with low level agriculture and grazing activities occurring at lower elevations. The staging of military training activities in the upper parts of the catchment does not appear to have any negative impact on Water Park Creek and its water quality. The potential for significant further development in the catchment area is unlikely due to the high conservation values of the area and the ongoing future use of the military training area.

As per the ADWG good practice guide for microbial safety, the raw water *E. coli* data supports the characterisation of this catchment as a vulnerability Class 2 (protected catchment), with a microbial band 2 (with a 95th percentile of 23mpn/100ml). This data has been collected weekly since 2020 from the inlet to the plant and is shown in figure 4.

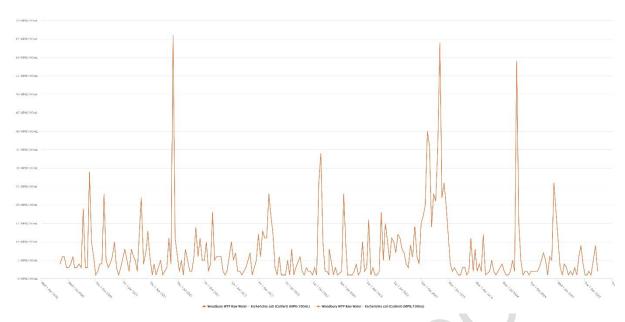


Figure 5 - Woodbury WTP Raw Water E. coli Data 2020-2025

The Water Park Creek storage is provided by a small concrete weir which is located immediately upstream of the Water Park Creek Road crossing of Water Park Creek at Byfield. The total volume of the weir storage is not well defined and not relevant to water security as pumping from Water Park Creek is only allowed when the creek is flowing, and other requirements are met.

Raw water from Water Park Creek is pumped to Kelly's Off-Stream Storage. This dam has a capacity of ~1200 ML, or approximately 3 months storage. Kelly's Off-Stream Storage has its own very small catchment which is dominated by moderately thick eucalypt forest on rocky hillsides. This storage is fully fenced and is not accessible by livestock. Kelly's Off-Stream Storage is normally operated to maintain 93% storage capacity so that this volume of water could be relied upon during periods (usually late spring to early summer) when flow in Water Park Creek can decrease, and pumping is not allowed. Whilst there is a direct pipeline from Water Park Creek to the WTP, it is not used under normal operation. Supply of raw water from Kelly's Off-Stream Storage to Woodbury WTP is the constant operational arrangement.

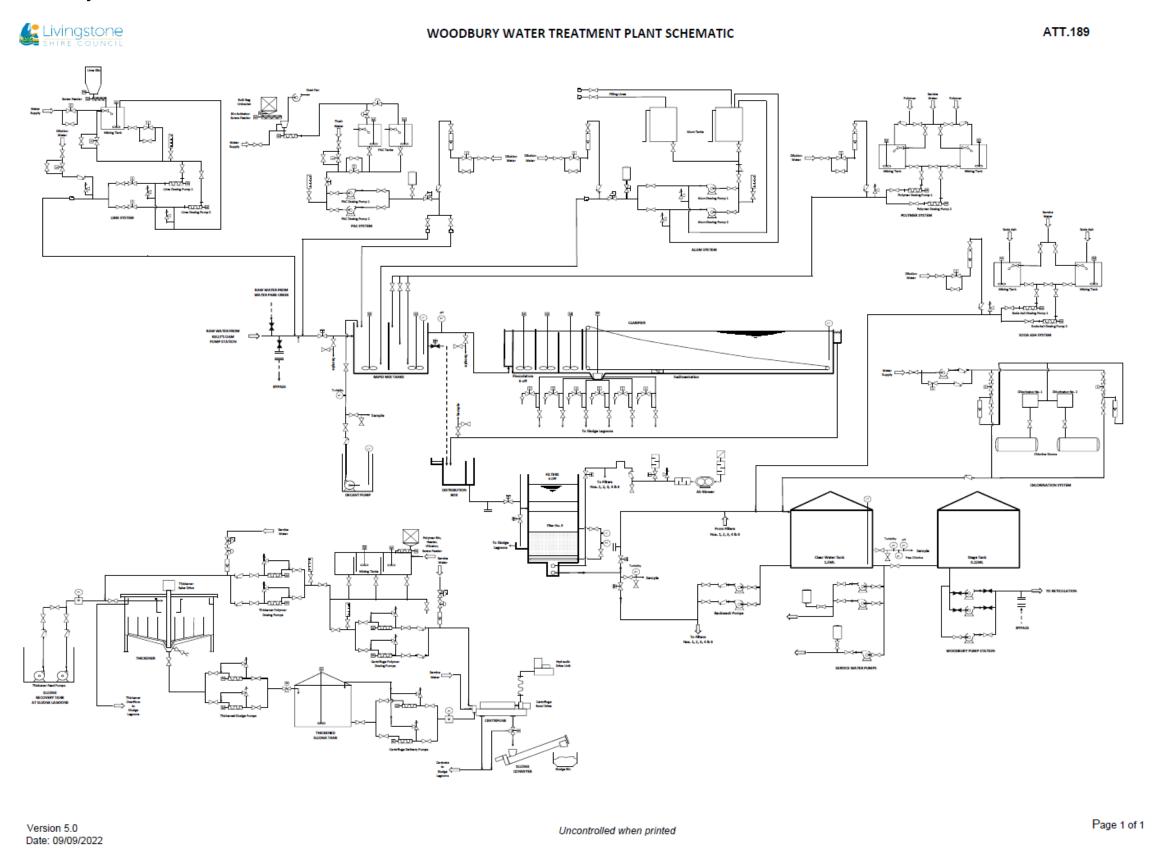
Yield: The yield from Water Park Creek is based on more than 100 years of records. The historical no failure yield over this period is 2,020 ML/year. If an event that occurred in 1902 is excluded from the calculation of yield, then Water Park Creek has a safe yield of 4,020 ML/annum (Water Supply Sources Study, Cardno, 2005). Both above-mentioned yields include the operation of the existing Kelly's Off-Stream Storage.

Water Quality: The Water Park Creek raw water is typical of a densely vegetated coastal catchment area with a high rainfall. The raw water is highly coloured, low alkalinity, low turbidity surface water. Apart from the high colour content, no significant water quality issues arise from the Water Park Creek site. The Kelly's Off-Stream Storage has occasional cyanobacterial blooms.

1.1.2 Fitzroy River Catchment

The Glenmore WTP draws raw water from the Barrage on the Fitzroy River. The Barrage sits at the bottom of the Fitzroy River Catchment which is the second largest in Australia covering more than 140,000 km². Due to the size of the catchment and the predominantly sub-tropical climate, the system is subject to highly variable but historically reliable flows with an average discharge between 5,000,000 and 6,000,000 ML/year. FRW operates the Barrage in accordance with a Resource Operations Plan (ROP).

The Barrage impoundment and upstream catchment are unprotected surface waters that are highly impacted by a multitude of different land use practices and industrial activities that occur in the various sub-catchments within the Fitzroy Basin. As such the raw water in the Barrage storage is a higher risk source than Water Park Creek. Typical water quality issues that arise include cyanobacterial blooms, mine water discharges that alter water quality aesthetics and high flow or flooding events that lead to highly variable raw water quality e.g. rapid changes in turbidity (up to 2000 NTU), and fluctuations in iron and manganese concentration. However, FRW is responsible for managing these risks.


2 Scheme Infrastructure and Operation

2.1 Woodbury Water Treatment Plant

The Woodbury WTP is a conventional water treatment plant, located at Woodbury, ~ 17 km north of Yeppoon on the Capricorn Coast. Commencing operation in 1988, the Woodbury WTP has a design capacity of 21.6 ML/d, with a peak flow of 250 L/s, however there is some doubt as to whether this is achievable. As the Capricorn Coast supply is supplemented by the Rockhampton-Yeppoon pipeline, the WTP typically produces 10-12 ML/day, or ~3/4 of the required supply, with a typical peak flow of ~190L/s. Optimum plant flow rate is 15-16ML/day which equates to around 185L/sec. At times of higher demand, water supply from the pipeline is increased, and the proportion of water produced is dependent on demand. It is possible for either supply to produce 100% of normal daily demand for the scheme, but this is not typical. Note: Figure 4 below has also been included as an appendices to allow for greater resolution.

Livingstone Shire Council Drinking Water Quality Management Plan

Figure 6 - ATT.189 Woodbury Water Treatment Plant Schematic

2.1.1 Process description:

Intakes and sourcing infrastructure:

Raw water is pumped form the intake at Water Park Creek, which is located approximately 150m upstream of the weir and consists of a fixed single intake pipe structure approximately one metre beneath the normal water level. The opening of the intake pipe is designed with a cylindrical intake strainer that contains bars with a spacing of ~ 80mm to prevent the large debris from entering the intake pipe. The duty/standby low lift pumps of ~ 150 L/sec capacity pump water a distance of approximately 400m to the Water Park Creek High Lift Pump Station (3 pumps of ~150 L/sec capacity each) which then pumps the water about 20km to the Kelly's Off-Stream Storage located in Woodbury which serves as a buffer storage for the Woodbury WTP.

The offtake structure at Kelly's Off-Stream Storage consists of nine different 2m inlets located at different depths with a 150mm bar screen set at the offtake depth to prevent the entry of large objects or debris. As the water quality in the storage is very stable, with turbidity rarely exceeding 5 NTU, the off-take depth is rarely varied. The Kelly's WPS contains two duty/standby variable speed drive pumps each with a capacity of 500 L/sec, with typical pumping rates of 190-205L/sec. These pumps are used to supply raw water from the Kelly's Off-Stream Storage about 800m to the Woodbury WTP inlet.

Powdered Activated Carbon (PAC) dosing:

Raw water is dosed with 0.2 to 0.3mg/L PAC using a duty/standby dosing system. The system is capable of ~2 mg/L dosing rate, but this is not required. PAC dosing is required to remove colour and other soluble organic compounds.

pH adjustment:

Hydrated lime is added (duty/standby arrangement) to increase the pH and alkalinity for the coagulation process. The target pH is set by jar testing (approximately monthly) and is typically in the range of 6.4-7. SCADA action alarms are set between the target and shutdown levels, with automatic plant shutdown if pH drops below 6.2, or exceeds 7.7. Soda ash can be substituted for the hydrated lime if required.

Coagulation/Sedimentation:

Water is dosed with liquid aluminium sulphate using a duty/standby dosing pump system as it enters the rapid mixing tank to commence coagulation. The use of the Kelly's Off-Stream Storage promotes a highly stable raw water quality which enables coagulant dose to remain relatively constant over time. Dose rates of 34-55 mg/L are typical but doses up to 100 mg/L are possible.

Water is then pumped into a flocculation tank where reciprocating mixers provide gentle mixing which promotes the formation of floc particles. Polyelectrolyte is dosed into the water to assist floc formation.

The chemically dosed water then passes into a sedimentation tank where floc particles are gravity settled to clarify the water. An array of tube settlers is used to promote the clarification process. The clear top surface of the water is then collected via finger weirs into a clear water channel which transfers the water to the filters. The tube settlers operate effectively at 200 L/s, but at higher flow rates, clarified water turbidity's increase. The turbidity target for the water entering the filtration process is 1 NTU, and this is measured daily by the WTP operators and recorded in the WTP log.

Sludge management:

Sludge is removed automatically from the clarifier by a sludge scraper. The sludge is centrifuged with the thickened sludge removed offsite, and the supernatant returned to the head of plant at a rate of 4.5 L/s. Supernatant return commences 10 min after the plant starts up.

Filtration:

Filtration is achieved using six rapid gravity sand filters of 1500 mm total bed depth. Each filter contains three 100 mm layers of silica sand gravel (effective size = 3.0-6.0 mm, 6.0-12.0 mm and 12.0-19.0 mm) beneath a 100 mm layer of silica sand (effective size = 1.5-3.0 mm) which is beneath a 400 mm deep layer of top sand (effective size = 0.9-1.0 mm). The layer of top sand is covered by a 600 mm deep layer of filter anthracite (effective size = 1.7-1.9 mm). Filters are automatically backwashed on head loss, with the current head loss trigger at 1.7m. Filters that reach the trigger are automatically taken offline and queued for backwash. One filter per day is also manually backwashed in addition to the automatic backwash cycle. Following backwash, the filters are filtered to waste for two minutes prior to being brought back online. Filter performance under these operating conditions generally produces water at less than 0.3 NTU, and typically closer to 0.1 NTU. Turbidity is monitored online at each individual filter by SCADA, with an alarm at 0.3NTU and a filter shutdown sequence initiated at >0.5NTU for 300 seconds.

pH adjustment:

Following filtration, the water is dosed with sodium carbonate using duty/standby dosing pump system to adjust the pH to a target of ~7.4. SCADA alarms indicate the action limits around the target pH, with plant shutdown triggered when pH is below 6.7 or exceeds 8.2 in the 1.5 ML clearwater reservoir.

Fluoridation:

Fluoride dosing equipment is present, but is no longer used, and is not considered further.

Disinfection:

Disinfection is achieved using a single flow-paced automatic gas chlorination system. A target disinfection concentration is typically 1.75 mg/L with operational action limits set to indicate low and high dose rates. The WTP shuts down if the dose rate drops below 0.5 mg/L or exceeds 3.0 mg/L for >15 minutes.

The final water is then pumped to the distribution system by the Woodbury high-lift pump station located on the Woodbury WTP site. The Woodbury high-lift WPS supplies water along 15-20 km of trunk main to the St Faith's Reservoir complex. Part way along this trunk main water is diverted to fill the small Woodbury Heights Reservoir. It is standard procedure to pump water from the Woodbury high-lift WPS via the Yeppoon West Valve Facility located on the Rockhampton to Yeppoon Water Supply Pipeline to fill the Taranganba Reservoir.

The Woodbury WTP is typically attended by two operators for up to seven hours each day in order to monitor and operate (if required) the Woodbury WTP as well as to perform a range of water quality and process performance tests and checks. All operators are trained to Certificate III level (new operators may not have this qualification but are trained to this level as soon as possible).

Operational details are recorded on WTP operating log sheets, and then transferred to the "Compliance and Reporting" spreadsheet that is saved on W: drive and accessible to all relevant staff. Details recorded include daily water quality test results, rainfall, treated water flow, chemical usage, and remaining amount.

Bypasses:

It is possible to bypass the clarification step and operate in "direct filtration" mode, however this would only be considered in emergency situations. There is no longer a full treatment plant bypass, this has been physically air gapped.

Dosing Chemicals:

Powdered activated carbon, hydrated lime, aluminium sulphate, polyacrylamide, chlorine gas, and soda ash.

2.2 Rockhampton- Yeppoon Pipeline

2.2.1 Glenmore Water Treatment Plant

The Glenmore WTP in Rockhampton is owned and operated by Rockhampton Regional Council, and this information is included here for completeness of understanding of potential risks that LSC may have to manage.

The Glenmore WTP has a maximum capacity to treat 120 ML/d.

The design of the Glenmore WTP has been maximised to handle very high raw water turbidity and the WTP can treat raw water with turbidity in excess of 2000 NTU.

Raw water is pumped to the inlet of the WTP where the option exists for pre-chlorination or chlorine dioxide dosing. Influent raw water is dosed with a coagulant and pumped into two identical parallel train flocculation/sedimentation basins.

Powdered Activated Carbon is added to remove colour, and polyacrylamide is added as a water clarification aid.

Water then passes through the sedimentation tank (chlorine dioxide can be dosed here also) and clarified water (target turbidity of 1.0 to 1.5 NTU) is collected via finger weirs into collection channels which then transfer the clarified water to the filters.

Filtration is achieved using 10 rapid gravity sand and garnet filters. Each filter contains a filter-to-waste function which enables poor quality filtered water to be wasted until the target water quality is achieved. Filters typically produce water with turbidity of <0.1 NTU.

Filtered water is dosed with hydrated lime by one of two duty/standby lime feeding systems to correct pH (pH 7.8 target) and is then disinfected with chlorine gas with a free chlorine residual setpoint of 1.1 mg/L with a target range of 0.5 to 1.5 mg/L of free chlorine (alternatively, chlorine dioxide is able to be used for disinfection).

The Glenmore high-lift water pump station (WPS) pumps water from the WTP through a network of trunk distribution mains to fill the Yaamba Road Reservoir which is the normal reservoir that supplies water to LSC. The Ibis Avenue WPS pumps water from the Yaamba Road Reservoir along the Rockhampton to Yeppoon Water Supply Pipeline to the Boundary Reservoir located halfway between Rockhampton and Yeppoon. The point of supply is on the outlet of the Boundary Reservoir. From here, the water is gravity fed (~140 m head) through 23.87 km of 600 mm DICL pipe to the Yeppoon West Valve Facility, and from here a further 3.3 km 750mm and 1.6 km of 600 mm DICL dedicated mains to Taranganba Reservoir. There are also 6 km of 600 mm DICL mains from the Yeppoon West Valve Facility that enter the existing trunk mains from the water treatment plant to the St Faith's Reservoir. There is a single control valve at the Yeppoon West Valve facility that is operated by the WTP operators remotely but is set manually. There are currently 4 customers between the Boundary Reservoir and the Yeppoon West Valve Facility (identified in Appendix 1) who are informed of any water quality issues, if required.

The Bulk Water Supply Agreement requires that a minimum of 3 ML/d of water is sourced through the pipeline. At times when the demand of the Woodbury WTP averages less than 15 ML/day, 3-5 ML/day treated water is sourced through the pipeline (e.g. 3 ML on weekdays, and typically closer to 5 ML on the weekends). When the WTP demand exceeds 16 ML/day, 6-8 ML/day is sourced from the pipeline. However, LSC is not required to take non-compliant water and will shut down this supply if necessary. Under these circumstances the impacted customers are contacted (refer Appendix A).

The water age in the pipeline is typically 5-7 days by the time it reaches the Yeppoon West Valve facility.

2.3 Reticulation network

The Capricorn Coast reticulation network consists of 450 km of pipes, with the following age and material breakdown (Figure 7 -). The majority of reticulation mains are 100mm-150mm, and the largest trunk mains reach up to 750mm diameter.

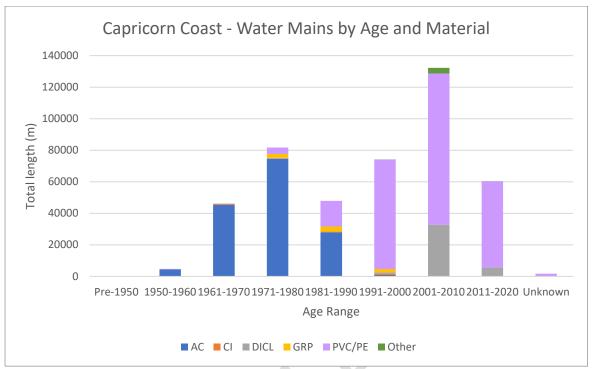


Figure 7 - Capricorn Coast Water Mains by Age and Material

There are 12 reservoirs in the reticulation network, with a combined capacity of ~38 ML, or 2 days supply.

Table 13 Capricorn Coast reservoir details

Reservoir Name	Year Built	Capacity (ML)	Type/Design	Roof
Woodbury	1995	0.3	Concrete circular	Fully enclosed concrete
Heights		·		
St Faith's 1	1950	2.27	Concrete rectangular	Fully enclosed metal sheet
St Faith's 2	1958	2.27	Concrete rectangular	Fully enclosed metal sheet
St Faith's 3	2011	3.5	Concrete circular	Fully enclosed concrete
Meikleville Hill	1978	0.45	Concrete circular	Fully enclosed metal sheet
Pacific Hts	2002	4.2	Concrete circular	Fully enclosed concrete
Chlorine S	Storage	200L	Fill Frequency	7-10 Days
Taranganba	1976	13.6	Concrete circular	Fully enclosed metal sheet
Chlorine S	Storage	5,000L	Fill Frequency	7-10 Days
Lammermoor Hts	2002	4.2	Concrete circular	Fully enclosed concrete
Emu Park	1983	2.27	Concrete circular	Fully enclosed metal sheet
Chlorine S	Storage	1,000L	Fill Frequency	7-10 Days
Emu Park West	2023	4.2	Concrete circular	Fully enclosed metal sheet
Chlorine Storag	je	2,000L	Fill Frequency	7-10 Days
Seaspray	2005	0.2	Concrete circular	Fully enclosed concrete
Chlorine S	Storage	Tablets	Fill Frequency	7-10 Days
Keppel Sands	1983	0.68	Concrete circular	Fully enclosed metal sheet
Chlorine S	Storage	80L	Fill Frequency	7-10 Days

The Woodbury WPS supplies water along 15-20 km of trunk main to the St Faith's Reservoir complex. Part way along this trunk main water is diverted to fill the small Woodbury Heights Reservoir. From the St Faith's Reservoir complex water is gravity fed to the reticulation network in Central Yeppoon, to the Meikleville WPS which pumps water to fill the Meikleville Hill, as well as gravity feeding to Pacific Heights Reservoir which supplies the reticulation network to the north of Yeppoon. To the north of the Pacific Heights Reservoir a trunk main supplies water to a privately owned and operated reservoir for the Mercure Resort. Water is also pumped from the St Faith's Reservoir complex to supply the reticulation area in West Yeppoon.

The Taranganba Reservoir supplies a local reticulation network and also gravity feeds water to fill the Lammermoor Heights Reservoir and the Emu Park Reservoir which supply local reticulation networks. The reticulation network in the community of Keppel Sands and the Keppel Sands Reservoir are supplied with water that is gravity fed from the Emu Park Reservoir.

Drinking water is rechlorinated with sodium hypochlorite at Taranganba, Emu Park, Keppel Sands and Pacific Heights Reservoirs. Dosing is interlocked to inflow, with a target residual of 0.8 mg/L, there are operational action limits set on each reservoir, and high- and low-level call outs above 1.8 mg/L and below 0.3 mg/L. There are duty/standby arrangements at Taranganba, but single dosing pumps at the other facilities. All rechlorination facilities are monitored using the SCADA system through a radio telemetry network. The chlorine storage tanks at each of these rechlorination sites have been sized to minimise the length of time the sodium hypochlorite sits in the tanks before using. Depending on water usage the tanks are refilled every 7-10 days with new chlorine. The storage tanks and use of non-stabilised chlorine tablets at Seaspray Reservoir (replenished weekly) have been determined so as not to compromise disinfection effectiveness and also minimise chlorite formation due to the decomposition of the sodium hypochlorite.

St Faiths' and Lammermoor reservoirs have chlorine residual SCADA monitoring, but the SCADA limits are different, with high alarms at 1.9mg/L and low-level alarms at 0.5 mg/L. These limits may trigger actions at the WTP as there is no dosing at these sites.

There are more than 30 pumps in the reticulation network that are used to transfer water and/or maintain pressure within the network. These pumps are monitored by SCADA.

Pressure is maintained throughout the network with the assistance of booster pump stations as required.

Water age increases towards Keppel Sands, but rechlorination as described above manages the risks associated with longer water age and mitigates the risk of a reduction in chlorine residual.

3 Water Quality InformationTypical water quality for the Capricorn Coast scheme follows, based on a review of operational and verification monitoring data from 2020-2025.

Table 14 - Operational monitoring data summary – Woodbury WTP (2020 to 2025)

Sample Location	Parameter	Units	Count	Min	Average	Max
	рН	-	1900	5.17	6.1	9.5
	Turbidity	NTU	1897	0.11	2.18	7.79
	Colour	HU	1900	1.26	86.8	182
Raw Water	Conductivity	μS/cm	1900	100	144.86	413
	Alkalinity	mg/L as CaCO₃	1897	3.5	6	17
	Temperature	°C	1899	16.1	24.1	32.1
Dosed Water	рН	-	1902	5.3	6.65	7.6
Settled Water	Turbidity	NTU	1751	0.09	0.389	1.85
Settled Water	Colour	HU	1873	<1	8.74	45
	рН	-	1903	6.89	7.29	7.86
	Turbidity	NTU	1902	0.061	0.16	0.61
	Colour	HU	1902	<1	2.02	10
Final Water	Conductivity	μS/cm	1903	140	224	278
i ilidi vvatoi	Alkalinity	mg/L as CaCO₃	1904	10.5	17.9	23
	Temperature	°C	1903	17	24	31
	Free chlorine	mg/L	1896	1.14	2.12	3.4
	рН	-	1905	6.41	7.3	7.73
	Turbidity	NTU	1902	0.02	0.17	0.28
	Colour	HU	1904	<1	1.68	21
St Faiths Reservoir	Conductivity	μS/cm	1903	202	232	1227
ot i aitis reservoi	Alkalinity	mg/L as CaCO₃	1902	0.6	17.2	21.5
	Free Chlorine	mg/L	1902	0.02	0.6	2.3
	Temperature	°C	1901	14.1	23	32.9

Table 15 - Verification monitoring data – Woodbury WTP raw and treated water, standard water analyses & heavy metals (2020-2025)

Demonstruction.	I live the			Raw	1			Tr	eated	
Parameter	Units	Count	Min	Average	Max	95 th percentile	Count	Min	Average	Max
Nitrate	mg/L	61	<0.01	0.012	0.02	0.02	45	0.01	0.23	0.1
Sulfate	mg/L	60	2	2.4	5	3	60	21	24.63	36
Fluoride (naturally occurring)	mg/L	61	<0.10	<0.10	0.2	0.19	59	<0.1	<0.1	<0.1
Aluminium (acid-soluble)	mg/L	60	0.03	0.095	0.25	0.15	60	0.01	0.037	0.13
Copper	mg/L	60	0.002	0.02	0.18	0.102	60	0.001	0.007	0.06
Iron	mg/L	60	<0.05	0.09	1.49	1.41	62	<0.05	<0.05	1.3
Lead	mg/L	61	<0.001	<0.001	<0.001	<0.001	61	<0.001	<0.001	<0.001
Manganese	mg/L	61	0.003	0.012	0.036	0.025	61	<0.001	0.007	0.058
Zinc	mg/L	62	<0.005	0.01	0.023	0.023	61	<0.05	<0.05	<0.06
рН	-	60	6.16	6.6	7.39	7.13	60	6.31	7.09	7.64
Turbidity	NTU	60	0.11	2.522	7.6	1.238	60	0.09	0.17	2.1
Alkalinity (Total as CaCO3)	mg/L	60	2	6.95	24	13.1	58	10	18.06	37
Calcium	mg/L	61	<1	1.44	10	2	60	2	10.81	14
Chloride	mg/L	60	26	35.26	43	42.05	60	29	38.01	46
Colour (True)	HU	63	15	48	80	80	60	2	2.35	5
Conductivity	μS/cm	60	126	147	165	165	59	203	226	261
Magnesium	mg/L	60	2	2.58	3	3	60	2	2.66	3
Nitrite	mg/L	61	<0.01	<0.01	<0.01	<0.01	57	<0.01	<0.01	<0.05
Potassium	mg/L	61	<1.0	<1.0	1	<1.0	60	<1.0	<1.0	<1.0
Sodium	mg/L	61	16	22.31	28	25	60	21	28.35	48
Total Dissolved Solids (TDS)	mg/L	64	82	95.93	107	106.85	60	132	147.2	170
Hardness (Total as CaCO3)	mg/L	61	8	14.16	33	17	60	13	37.93	47

D	1124			Raw	,			Tr	eated	
Parameter	Units	Count	Min	Average	Max	95 th percentile	Count	Min	Average	Max
Total Organic Carbon (TOC)	mg/L	18	4	5.72	8	8	17	1	2.41	4
Arsenic	mg/L	28	<0.001	<0.001	0.001	0.001	28	<0.001	<0.001	<0.001
Cadmium	mg/L	29	0	0.00001	0.0003	0.004	29	0	0.00001	0.0002
Chromium	mg/L	29	0.001	0.003	0.005	0.004	29	0	0	0
Nickel	mg/L	29	<0.001	0.008	0.036	0.013	29	<0.001	<0.001	0.007
Selenium	mg/L	29	<0.01	<0.01	<0.01	<0.01	29	<0.01	<0.01	<0.01
Mercury	mg/L	27	0	0	0	0	27	0	0	0
Cryptosporidium	0	5	ND	ND	ND	N/A	5	ND	ND	ND
Giardia	Oocysts/10L	5	ND	ND	ND	N/A	5	ND	ND	ND
OC/OP Pesticides	μg/L	5	ND	ND	ND	N/A	5	ND	ND	ND

Table 16 - Verification monitoring data – Glenmore WTP Raw Water, standard water analyses & heavy metals (2018-2023)

		Source	Water (R	AW) Gler	nmore Wa	ter Treat	ment Plar	t ROCKH	AMPTON	QLD			
(a = L/2 used for < results)		Data obtai	ned from sa	mpling July	2022 - June	2023		Data obtai	ined from sa	ampling July	2018-June	2023	
			No. of		Summary	of results		Time	No. of		Summary	of results	
Parameter	Unit	Time Period	No. of Samples	Average Value	Min value	Max value	95th percentile	Period	Samples	Average Value	Min value	Max value	95th percenti
pH	Unit	1 year	12	7.44	6.70	7.86	7.76	5 years	60	7.58	6.70	8.1	8.0
Colour (True)	HU	1 year	12	59.58	30.00	140.00	126.25	5 years	59	40.14	10	140	126.3
Turbidity	NTU	1 year	12	184.08	51.30	530.00	499.2	5 years	60	178.14	5.40	1330	499.2
Electrical Conductivity	μS/cm	1 year	12	213.08	133.00	303.00	290.35	5 years	60	221.20	118	310	290.4
Total Dissolved Solids	mg/L	1 year	12	245.17	161.00	396.00	362.45	5 years	60	234.22	100	396	362.5
Chloride	mg/L	1 year	12	23.00	16.00	36.00	32.7	5 years	60	30.77	10	81	32.7
Fluoride a	mg/L	1 year	12	0.55	0.005	0.10	0.1	5 years	60	0.091	0.005	0.200	0.1
Nitrate (as N)	mg/L	1 year	12	0.21	0.10	0.59	0.43	5 years	60	0.187	0.002	0.590	0.4
Nitrite (as N) a	mg/L	1 year	12	0.005	0.005	0.005	0.005	5 years	60	0.01	0.00	0.088	0.0
Sulphate	mg/L	1 year	12	5.00	3.00	8.00	6.9	5 years	60	5.62	2	12	9.1
Aluminium (Acid Soluble)	mg/L	1 year	12	0.64	0.117	1.98	1.50	5 years	60	0.44	0.01	1.98	1.1
Iron (Total)	mg/L	1 year	9	8.22	3.38	17.70	15.54	5 years	57	4.90	0.00	17.7	12.6
Manganese (Total)	mg/L	1 year	9	0.10	0.047	0.215	0.19	5 years	57	0.10	0.00	0.723	0.3
Copper (Total)	mg/L	1 year	9	0.009	0.01	0.017	0.02	5 years	57	0.01	0.00	0.021	0.0162
Lead (Total) a	mg/L	1 year	9	0.002	0.001	0.004	0.004	5 years	57	0.00	0.00	0.0082	0.0056
Zinc (Total)	mg/L	1 year	9	0.017	0.006	0.03	0.03	5 years	57	0.01	0.00	0.091	0.0356
Calcium (Total)	mg/L	1 year	12	12.00	7.00	18.00	16.9	5 years	60	12.02	6.70	18	16.0
Sodium (Total)	mg/L	1 year	12	20.50	14.00	28.00	27.45	5 years	60	20.13	11	28	26.1
Potassium (Total)	mg/L	1 year	12	5.08	4.00	8.00	7.45	5 years	60	4.29	2	8	7.0
Magnesium (Total)	mg/L	1 year	12	7.75	5.00	11.00	9.9	5 years	60	7.39	4.10	13	9.1
Hardness (Total)	mg/L	1 year	12	51.50	31.00	72.00	70.9	5 years	59	52.81	25	75	70.2
Alkalinity (Total) as CaCO3	mg/L	1 year	12	57.33	31.00	80.00	77.8	5 years	60	56.67	30	93	77.2
Total Organic Carbon	mg/L	1 year	1	5.00	5.00	5.00	5	5 years	15	7.25	5.10	11	10.0
Arsenic	mg/L	1 year	6	0.0022	0.0020	0.0030	0.00275	5 years	11	0.0019	0.0005	0.0030	0.0028
Barium	mg/L	1 year	6	0.066	0.04	0.12	0.11	5 years	11	0.077	0.041	0.193	0.1575
Beryllium a	mg/L	1 year	6	0.001	0.001	0.001	0.0005	5 years	11	0.00	0.00	0.001	0.0008
Cadmium a	mg/L	1 year	6	0.00005	0.00005	0.00005	0.00005	5 years	11	0.00005	0.00005	0.00005	0.0001
Chromium	mg/L	1 year	0	NR	NR	NR	NR	5 years	2	0.007	0.004	0.011	0.0106
Mercury a	mg/L	1 year	5	0.00005	0.00005	0.00005	0.00005	5 years	10	0.0001	0.0001	0.00072	0.0004
Nickel	mg/L	1 year	6	0.0165	0.0050	0.0520	0.0448	5 years	11	0.01361	0.00050	0.052	0.0375
Selenium a	μg/L	1 year	6	0.005	0.005	0.005	0.005	5 years	11	0.00	0.00	0.005	0.0050
Perfluorooctanoic Acid	μg/L	1 year	2	0.45	0.01	0.89	0.85	5 years	5	0.19	0.01	0.89	0.7170
Perfluorooctane Sulphate	μg/L	1 year	0	NR	NR	NR	NR	5 years	3	0.01	0.01	0.025	0.0235
Pesticides	μg/L	1 year	1	0.10	0.10	0.10	0.1	5 years	4	0.10	0.10	0.1	0.1000
BOD	mg/L	1 year	11	2.50	1.00	4.00	4	5 years	16	2.81	1	5	4.2500
		,		0.00	0.00	0.00	0.00		6	0.00	0.00	0	0.0000
Cryptosporidium	oocyst/10L	1 year	1	0.00	0.00	0.00	0.00	5 years	6	0.00	0.00	U	0.0000
Cryptosporidium Giardia	oocyst/10L oocyst/10L	1 year 1 year	1	0.00	0.00	0.00	0.00	5 years	6	0.00	0.00	0	0.0000

Table 17 - Verification monitoring data – Glenmore WTP Treated Water, standard water analyses & heavy metals (2018-2023)

		Pota	ble Wate	er (TRE/	TED) G	lenmore	Water 1	Freatme	nt Plant	ROCKH/	AMPTON	QLD				
(a = L/2 used for < results)				Data	obtained	from samp	oling July 2	022 - June	2023	Data	obtained t	from samp	ling July 20	18-June 2	2023	
		ADWG				Sum	mary of re	esults				Sum	mary of res	ults		No. of
Parameter	Health	Aesthetic	Unit	Time Period	No. of Samples	Average Value	Min value	Max value	95th percentile	Time Period	No. of Samples	Average Value	Min value	Max value	95th percentile	ADWG value
pH	No Value	6.5-8.5	unit	1 year	12	7.61	7.37	7.78	7.769	5 years	60	7.63967	7.08	8.16	7.9005	NII
Colour (True)	No Value	15 HU	TCU	1 year	12	2.83	1	10.00	7.25	5 years	60	1.78333	1	10	2.05	NII
Turbidity	<1 NTU	5 NTU	NTU	1 year	12	0.22	0.05	0.50	0.445	5 years	60	0.2	0.05	0.7	0.505	NII
Electrical Conductivity	No Value	No Value	μS/cm	1 year	12	236.75	170	288.00	286.9	5 years	60	242.7	142	288	300.5	NII
Total Dissolved Solids	No Value	600 mg/L	mg/L	1 year	12	136.17	100	176.00	170.5	5 years	60	141.533	83	210	180.5	Nil
Chloride	No Value	250 mg/L	mg/L	1 year	12	32.75	21	81.00	59	5 years	60	38.05	15	81	76.1	NII
Fluoride a	1.5 mg/L	No Value	mg/L	1 year	12	0.07	0.05	0.10	0.1	5 years	60	0.08083	0.05	0.2	0.11	Nil
Nitrate (as N) a	50 mg/L	No Value	mg/L	1 year	12	0.02	0.005	0.12	0.1145	5 years	60	0.17088	0.005	0.6	0.372	NII
Nitrite (as N) a	3 mg/L	No Value	mg/L	1 year	12	0.22	0.005	0.60	0.446	5 years	60	0.04636	0.0025	0.6	0.2905	NII
Sulphate	500 mg/L	250 mg/L	mg/L	1 year	12	4.17	2	5.00	5	5 years	60	4.5	2	12	8.05	NII
Aluminium (Acid Soluble) a	No Value	0.20 mg/L	mg/L	1 year	12	0.01	0.0025	0.03	0.0215	5 years	60	0.00828	0.0025	0.027	0.01605	NII
Iron (Total) a	No Value	0.30 mg/L	mg/L	1 year	9	0.09	0.0025	0.68	0.418	5 years	57	0.01642	0.0025	0.68	0.025	Nil
Manganese (Total) a	0.50 mg/L	0.10 mg/L	mg/L	1 year	9	0.03	0.0005	0.29	0.176	5 years	57	0.00622	0.00025	0.292	0.00246	Nil
Copper (Total) a	2 mg/L	1 mg/L	mg/L	1 year	9	0.004	0.001	0.007	0.0058	5 years	57	0.00432	0.001	0.012	0.0074	NII
Lead (Total) a	0.01 mg/L	No Value	mg/L	1 year	9	0.0005	0.0005	0.0005	0.0005	5 years	57	0.00054	0.00022	0.0011	0.000896	Nil
Zinc (Total) a	No Value	3 mg/L	mg/L	1 year	9	0.003	0.0025	0.006	0.0046	5 years	57	0.0026	0.0018	0.006	0.0025	NII
Calcium (Total)	No Value	No Value	mg/L	1 year	12	14.50	8	20.00	18.35	5 years	60	13.66	8	20	17.05	Nil
Sodium (Total)	No Value	180 mg/L	mg/L	1 year	12	21.17	14	28.00	27.45	5 years	60	20.3	11	28	27	NII
Potassium (Total)	No Value	No Value	mg/L	1 year	12	4.33	3	6.00	6	5 years	60	3.81333	2	6	6	NII
Magnesium (Total)	No Value	No Value	mg/L	1 year	12	6.83	4	10.00	9.45	5 years	59	6.65593	3.8	14	9	NII
Hardness (Total)	No Value	200 mg/L	mg/L	1 year	12	61.58	40	77.00	77	5 years	60	59.95	36	95	77.05	NII
Alkalinity (Total) as CaCO3	No Value	No Value	mg/L	1 year	12	59.67	32	79.00	79	5 years	60	57.25	32	107	75.2	NII
Total Organic Carbon a	No Value	No Value	mg/L	1 year	4	1.88	0.5	3.00	2.85	5 years	19	2.96316	0.5	7	5.83	NI
Trihalomethanes	250 µg/L	No Value	mg/L	1 year	4	34.75	19	50.00	48.2	5 years	19	32.4526	19	51	50.1	NII
Trihalomethanes - Retic Arsenic a	250 µg/L 0.01 mg/L	No Value No Value	mg/L mg/L	1 year	6	0.0005	0.0005	0.0005	0.0005	5 years	18	118.106 0.00044	71.1	0.0005	170.35 0.0005	NII NII
				1 year	6	0.0365	0.0003	0.0003	0.0405	5 years	11	0.03186	0.00003	0.0005	0.043	NII
Barium a Beryllium a	2 mg/L 0.06 mg/L	No Value No Value	mg/L mg/L	1 year	6	0.0005	0.0005	0.0410	0.0405	5 years 5 years	11	0.00042	0.00005	0.0005	0.0005	NII
Cadmium a	0.002 mg/L	No Value	mg/L	1 year	6	0.00005	0.00005	0.00005	0.00005	5 years	11	0.00005	0.00005	0.00005	0.00005	Nil
Chromium a	0.002 mg/L	No Value	mg/L	1 year	NR.	NR.	NR	NR	NR	5 years	2	0.00005	0.00003	0.0003	0.00005	Nil
Mercury a	0.001 mg/L	No Value	mg/L	1 year	5	0.00005	0.00005	0.00005	0.00005	5 years	10	0.00025	0.00025	0.00005	0.000025	Nil
Nickel a	0.02 mg/L	No Value	μg/L	1 year	6	0.0007	0.0005	0.001	0.001	5 years	11	0.00062	0.0005	0.001	0.001	NII
Selenium a	0.01 mg/L	No Value	μg/L	1 year	6	0.005	0.005	0.01	0.005	5 years	11	0.00001	0.00025	0.005	0.005	NI
Perfluorooctanoic Acid a	0.01 mg/L	No Value	μg/L	1 year	1	0.005	0.005	0.005	0.005	5 years	3,000	0.007	0.005	0.010	0.010	NII
Sum of PFOS + PFHxS a	0.05 µg/L	No Value	μg/L	1 year	1	0.01	0.005	0.005	0.005	5 years	3.000	0.020	0.010	0.025	0.025	NI
Chlorate a	No Value	No Value	mg/L	1 year	7	0.02	0.001	0.102	0.0729	5 years	19	0.03375	0.001	0.132	0.1303	NII
Chlorite a	0.8 mg/L	No Value	mg/L	1 year	7	0.002	0.001	0.005	0.00425	5 years	20	0.00532	0.001	0.027	0.0243	NII
Cryptosporidium	<1 organism/L	No Value	oocyst/10L	1 year	1	Nil Detected	Nil Detected	Nil Detected	0	5 years	5	Nil Detected	Nil Detected	Nil Detected	0	NII
Giardia	<1 organism/L	No Value	oocyst/10L	1 year	1	Nil Detected	Nil Detected	Nil Detected	0	5 years	5	Nil Detected	Nil Detected	Nil Detected	0	NII
Cyanide	0.8 mg/L	No Value	mg/L	1 year	0	NR	NR	NR	NR	5 years	2	0.002	0.002	0.002	0.002	NII

Table 18 - Verification monitoring data summary - Capricorn Coast (2020 to 2025)

able to F verification monito	inig aata ca.	u. y	<u></u>	0003t (2020	10 2020)
Parameter	Units	Count	Min	Average	Max
Free chlorine	mg/L	445	0.02	0.54	1.77
Electrical conductivity	μS/cm	445	172	245	674
рН	-	441	6.96	7.84	8.74
True colour	HU	444	1	0.18	6
Turbidity	NTU	444	0.05	0.17	2.8
E. coli	MPN/100mL	451	<1	<1	<1
THMs (Woodbury WTP)	μg/L	19	26	45	113
THMs (Capricorn Retic)	μg/L	36	98	175	262
Chlorate (Capricorn Retic)	mg/L	15	0.11	0.3	1.14

4 Hazards

The hazards and unmitigated risks (Medium, High or Extreme) that are relevant to the Capricorn Coast service have been brought forward to the Risk Assessment.

5 Risk Assessment

The preventative measures that are present for the unmitigated risks have been identified. The mitigated risk is determined based on the likelihood and consequence of the hazard occurring in the presence of the preventative measure.

Where a preventative measure is required to lower the risk to an acceptable level, the procedure used to ensure the measure is in place, and effective is identified. Where no formal procedure exists, a risk management improvement plan item is identified.

6 Operational Monitoring

The following parameters are monitored at the Woodbury WTP by SCADA with operational actions required outside the target range. The actions to return the process to the target levels are undertaken by the onsite operator. This section supplements the operational description provided above.

Daily Laboratory Testing:

Raw water: pH, Turbidity, Colour, Conductivity, Alkalinity, Temperature

Dosed water: pH

Clarifier: Alum dose rate set point, Turbidity, Colour

Final Water: pH, Turbidity, Colour, Conductivity, Alkalinity, Temperature, Chlorine

St Faiths Reservoir complex: pH, Turbidity, Colour, Conductivity, Alkalinity, Chlorine), Temperature. Note a flammable single sample tap has now been installed to obviate the need for grab samples from individual reservoirs and is considered more representative of water supplied.

Daily Testing is written on the Operators Test Log Sheet and entered into W: drive.

Online Continuous Monitoring:

WTP Hydraulics: Raw water, filtered water, treated water, Rockhampton-Yeppoon pipeline flow rates, individual filter head loss.

Dose Rates: PAC, hydrated lime, aluminium sulphate, polyelectrolyte, chlorine gas, soda ash

Online Chemical parameters: pH – pH correction, Clearwater, Turbidity – Clearwater, Disinfection Residual – Clearwater, St Faiths, Taranganba, Emu Park, Keppel Sands (Boundary Reservoir – for information, not controlled by Livingstone SC).

Livingstone Shire Council Drinking Water Quality Management Plan

Table 19 Mitigated risk assessment – Capricorn Coast

able 19	Mitigated risk ass	essment – Ca	apricorn Coa	ıst										
Process	Hazardous Event	Hazards managed by	Unmitigated Risk	Primary preventative	Other Preventative		Mitigated		Uncertainty	Documented	Risk I	Management Improv	rements	Comments
Step		same barriers	RISK	measure	Measures	Consequence	Likelihood	Risk		Procedure	Immediate	Short term	Long Term	
PAC dosing	Failure of PAC dosing	Taste and odour	High 10	SCADA control and alarms Duty/standby pumps	Spare pumps	Minor	Unlikely	Low 4	Confident					
PAC dosing	Toxic algal bloom in Kellys, breakthrough WTP	Cyanobacteria (Woodbury)	Medium 8	PAC, Chlorination	Oxidation during disinfection step	Moderate	Rare	Low 3	Confident	SCADA alarms and actions				
Clarifier return	Recontamination from supernatant	Protozoa (Woodbury)	Extreme 20	Filtration interlocked to inflow		Moderate	Possible	Medium 9	Estimate		Turbidity analyser installed on return line & automatic plant shutdown on high turbidity programmed.			Rate of return 4.5L/sec = 2-3% of plant flow. Turbidity analyser installed on return line & automatic plant shutdown on high turbidity programmed. Have turbidity analysers on filters downstream of clarifer.
pH adjustment	Change in raw water quality, failure to dose/overdose of lime	pH (high or low)	Medium 6	auto plant shutdown <6.2 or >7.7		Minor	Unlikely	Low 4	Confident		-	-		
Coagulation	Coagulation failure (e.g. change of raw water quality, non- optimal dose)	Heavy metals	Medium 6	Alarms on loss of dosing & mixer failure Re-order at 12kL (of 30kL) tank, supply arrives within a few days Operator inspections (daily)	Filtration (oxidation with chlorination)	Minor	Unlikely	Low 4	Confident			Investigate Installing ORP analyser at Woodbury WTP inlet		Raw water quality is very stable, ORP meter wouldn't tell you much. Have duty/Stby pumps & have plant alarms if we have a Loss of dosing pump; plant shut down if rapid mixer goes down.
Coagulation	Failure of alum pump	Colour	High 10	Duty/standby pumps Operator inspections (daily)	PAC	Minor	Unlikely	Low 4	Confident					duty standby, daily operator testing for colour, monthly jar test (or change), SCADA
Coagulation	Bypass of coagulation	Colour	High 10	Only considered during emergencies Can only operate on- site via SCADA (can't operate from off-site)	Filtration	Minor	Rare	Low 2	Confident					

Process	Hazardous Event	Hazards managed by	Unmitigated	Primary preventative	Other Preventative	N	/litigated		Uncertainty	Documented	Risk	Management Improv	ements	Comments
Step		same barriers	Risk	measure	Measures	Consequence	Likelihood	Risk		Procedure	Immediate	Short term	Long Term	
Filtration	Source contamination	Protozoa (Woodbury)	Extreme 20	Filtration with individual filter turbidity monitoring. Filter alarm at 0.3NTU, filter stops production at 0.5NTU for 5 mins	Coagulation; ability to source additional water from Rockhampton	Catastrophic	Rare	Medium 6	Estimate		Review turbidity- based backwash triggers (e.g. >0.3 NTU for 14mins if possible)	Consider installing a turbidity meter at the clarifier to provide advance warning of carryover	Structural works and filter media replacements started October 2022 Consider undertaking Cost-Benefit Analysis for installation of UV at Woodbury WTP	Project complete. High turbidity backwash re- initiated on refurbished filters. U.V cost excessive given improved water quality from filters.
Filtration	Breakthrough	Protozoa (Woodbury)	Extreme 20	Filtration with individual filter turbidity monitoring. Filter alarm at 0.3NTU, filter stops production at 0.5NTU for 5 mins	2min filter to waste following backwash	Catastrophic	Rare	Medium 6	Confident					Backwash pumps replaced several years ago
Filtration	Failure filtration/ soda ash	Turbidity	Medium 8	SCADA Control, turbidity monitoring, backwash		Minor	Possible	Medium 6	Confident	SCADA alarms and actions		Purchase Duty/standby soda ash pumps at		Duty/standby soda ash pumps at Woodbury WTP are installed & spares have been purchased.
Disinfection	Underdosing	Bacteria/Virus (Woodbury)	Extreme 20	SCADA controlled disinfection with a Low alarm at 1.5mg/L, a Low Low alarm at 1.5mg/L and anauto- shutdown at <0.5mg/L for 5mins		Catastrophic	Rare	Medium 6	Confident	SCADA alarms and actions (CCP procedure)		Investigate auto- removal of control system inhibit (e.g. when calibrating)	To be investigated during filtration upgrade SCADA programming.	Complete. auto-removal of control system inhibit installed. CT at CWT outlet calculated to be 16.2mg.min/L at 0.5mg/L; assuming baffle factor of 0.1. One customer close to the treatment plant
Disinfection	Overdose	Chlorine	Medium 9	SCADA controlled disinfection with High alarm at 2.8mg/L and High High and auto- shutdown at >3mg/L for 5mins		Moderate	Rare	Low 3	Reliable	SCADA alarms and actions (CCP procedure)				Has not happened at Woodbury - CCP procedure developed.
Pipeline	Importation of water outside of agreed quality limits	Chlorine / turbidity / pH	Medium 9	Bulk water supply agreement		Moderate	Unlikely	Medium 6	Confident	Supply agreement	Working relationship with RRC		Re-negotiation of bulk supply agreement to include chlorine CCP's	Have had instances of chlorine residuals below 0.2mg/L which are outside LSC control. Unmitigated risk assumes RRC

Process	Hazardous Event	Hazards managed by	Unmitigated	Primary preventative	Other Preventative		Mitigated		Uncertainty	Documented	Risk M	lanagement Impro	vements	Comments
Step	Tiuzuruous Event	same barriers	Risk	measure	Measures	Consequence	Likelihood	Risk	Oncortainty	Procedure	Immediate	Short term	Long Term	Johnnents
														DWQMP is functioning
Pipeline	Recontamination of reservoirs/network	Protozoa (network)	Medium 6	Reservoir design		Catastrophic	Rare	Medium 6	Reliable					Maintaining chlorine residual in network reduces risk.
Pipeline	Recontamination/ secondary disinfection failure	Bacteria/Virus (Glenmore)	Medium 6	Maintain residual, re- chlorination		Catastrophic	Rare	Medium 6	Confident	SCADA alarms and actions				Weekly testing from FRW at handover, LSC weekly
Pipeline	Opportunistic contamination	Opportunistic Pathogen (Naeglaria fowlerii)	Medium 5	Disinfection residual	Mains break procedure	Major	Rare	Medium 5	Estimate	SCADA alarms and actions		-		Maintaining chlorine residual in network reduces risk.
Pipeline	Breakthrough from WTP	Manganese (Glenmore)	Low 3	Nil		Moderate	Rare	Low 3	Reliable			-		LSC samples water supplied weekly. Access to FRW online residual monitoring.
Pipeline	Overdose	Chlorine	Medium 9	SCADA Alarms and associated actions		Moderate	Unlikely	Medium 6	Certain	SCADA alarms and actions				LSC samples water supplied weekly. Access to FRW online residual monitoring.
Pipeline	Reaction of organic matter with chlorine in pipeline	Disinfection byproducts	Medium 6	Control disinfection levels, not supply from pipeline	Communication between providers	Moderate	Unlikely	Medium 6	Reliable	SCADA alarms and actions				Control measures include not supplying from this source, increased blending etc.
Pipeline	Mains break	Failure of supply	Medium 8	Mains break procedure	Asset replacement/ management	Minor	Unlikely	Low 4	Confident			-		
Pipeline	Any error	Operator error	High 15	Chlorination post Mt Charlton. Reliant on FRW processes to identify issues.		Catastrophic	Rare	Medium 6	Reliable	staff training documented				LSC samples water supplied weekly. Access to FRW online residual monitoring.
Pipeline	Deliberate actions	Terrorism /sabotage	High 10	Inspections, site security, door alarms, ERP		Catastrophic	Rare	Medium 6	Estimate					
Reticulation	Contamination	Protozoa (network)	Medium 6	Mains break procedure, network pressure		Catastrophic	Rare	Medium 6	Reliable					
Reticulation	Recontamination reservoirs/ retic	Bacteria/Virus (Network)	High 10	Residual disinfection, redosing at reservoirs, mains break procedure,	Quarterly inspections of reservoirs	Catastrophic	Rare	Medium 6	Reliable	SCADA alarms and actions		-		New re-chlorination station at Pacific Heights Reservoir

Process	Hazardous Event	Hazards managed by	Unmitigated	Primary preventative	Other Preventative		Mitigated		Uncertainty	Documented	Risk I	Management Improv	ements	Comments
Step	1100000	same barriers	Risk	measure		Consequence	Likelihood	Risk	- Officer turnity	Procedure	Immediate	Short term	Long Term	Comments
				network pressure										
Reticulation	Contamination	Opportunistic Pathogen (Naeglaria fowlerii)	Medium 5	Disinfection		Major	Rare	Medium 5	Reliable	SCADA alarms and actions				Maintaining chlorine residual in network reduces risk.
Reticulation	Resuspension/biofilm / main break	Turbidity	Medium 8	SCADA, main break		Minor	Likely	Medium 8	Confident	mains break procedure,		Have conducted disinfection & mains brake procedure.	-	Maintaining chlorine residual in network reduces risk.
Reticulation	Reaction of organic matter with chlorine in reticulation	Disinfection byproducts	Medium 6	Removal of organics through treatment and disinfection management	Scheduled mains flushing program	Minor	Unlikely	Low 4	Reliable					THMs - 2014- 2020 data average 140ug/L, maximum 250ug/L
Reticulation	Redosing multiple times	Chlorate	Medium 9	Š		Moderate	Possible	Medium 9	Reliable			-		Have only had 1 exclusion above proposed limit at Keppel Sands Reservoir.
Reticulation	Supply zone failure	Failure of supply	Medium 8	Generator backup, and duty/standby, Alternate supply		Major	Rare	Medium 5	Confident					
Reticulation	Backflow	Bacteria/Virus (Network)	High 10	All metered connections have backflow prevention. Disinfection, pressurised scheme		Catastrophic	Rare	Medium 6	Reliable					Not aware of any unmetered connections
Reticulation	Backflow	Chemical	Medium 6	All metered connections have backflow prevention Disinfection, pressurised scheme		Moderate	Rare	Low 3	Reliable					Not aware of any unmetered connections
Re- chlorination	Overdose	Chlorine	Medium 9	SCADA		Moderate	Unlikely	Medium 6	Reliable	SCADA alarms and actions				Emu Park Reservoir - optimised dosing at reservoir to correct issue
Whole of System	Woodbury plant failure	Failure of supply	Medium 8	Alternate supply		Major	Unlikely	Medium 8						
Whole of System	Mistakes	Operator error	High 15	Operators trained to Cert 3, monthly toolbox, prestart meeting	Work instructions for various tasks, buddy up new Operators with experienced Operators	Catastrophic	Rare	Medium 6		SCADA alarms and actions				

Drinking Water Quality Management Plan

Process	Hazardous Event	Hazards managed by	Unmitigated	Primary preventative	Other Preventative		Mitigated		Uncertainty	Documented	Risk I	Management Improv	ements	Comments
Step		same barriers	Risk	measure	Measures	Consequence	Likelihood	Risk		Procedure	Immediate	Short term	Long Term	
Whole of System	Deliberate contamination (incl cyber security attacks with a physical element)	Terrorism /sabotage	High 10	Security fencing/ locked gates, SCADA monitoring, separate SCADA levels	Some water pump stations have door alarms	Catastrophic	Unlikely	High 10	Confident	SCADA Cyber Security Procedure (March 2020)		Develop scope of works for site security upgrades. Complete.	Undertake site security upgrades	New Automatic gates at WWTP.This risk aligns with the assessment made in LSC procedure for Cyber Security management
Whole of System	Change to SCADA limits resulting in compromised system operation	Bacteria/Virus (Woodbury)	Extreme 20	Operator training		Catastrophic	Rare	Medium 6	Estimate			Review SCADA access protocols to determine if any short-term improvements are available	Consider engaging an expert to undertake a cyber security review	Individual SCADA logins implemented. SCADA data sent via encrypted network. Password changes 2 Monthly as per MSP-056 SCADA Cyber Security.
Whole of System	Unauthorised remote access to systems leading to water quality impacts	Terrorism /sabotage	High 10	Password policies Firewalls Antivirus software	SCADA user access register defines levels of access System backups	Catastrophic	Rare	Medium 6	Confident	SCADA Cyber Security Procedure (March 2020)			Consider engaging an expert to undertake a cyber security review. Completed by JLT in 2024	Cybersecurity exercise undertaken September 2022. Cyber Security controls review completed by JLT in 2024.
Whole of System	Insufficient Operators available	Bacteria/Virus (Woodbury)	Extreme 20	Disaster Management; likely call on neighbouring Councils for assistance	Contract Operators potentially available; 2 additional staff being trained to Cert III level	Catastrophic	Unlikley	High 10	Estimate			Prepare a business case for additional Operator(s) - Complete		Ongoing. Have full complement of staff, however still a shortage industry wide.
Whole of System	Breakdown of sodium hypochlorite (high temperatures etc.)	Chlorate	Medium 9	, Storage tanks undercover to reduce heat and sun exposure	Chemical turnover (smaller tanks filled every 7- 10 days)	Moderate	Unlikely	Low 4	Reliable		Scofield parade area flushed.	Scofield parade added to mains Flushing program.	Council is partnerd with QLD Health & the U Qooking at disinfection by-product mitigation and reduction strategies within Reservoirs.	All results have been low since testing commenced on 03/02/2021. One exceedance at Scofield parade 1/2/2022 1.14mg/L, exceeding the Queensland Health Recommended Guideline value of 0.8mg/L. Implemented recommendation of study and have diluted Hypo at Kepple Sands reservoir to reduce chlorate formation.

PART 3 THE CAVES DRINKING WATER SCHEME

1 Overview of Scheme

The entire water supply for The Caves is sourced from and is a zone within the Glenmore Water Treatment Plant reticulation network. The local government boundary cuts this area from the Glenmore WTP reticulation network. LSC has no role in treating the water for the scheme except for re-chlorination at Mt Charlton reservoir.

The Caves area, located to the North of Rockhampton, includes the Mt Charlton, Ramsay Creek, Etna Creek, Glenlee, Glendale, Rockyview, and The Caves communities. The point of supply to LSC is at the outlet of Ramsay St Pump Station. The Mt Charlton Reservoir, located past The Caves, is currently the only rechlorination location. The Capricorn Correctional Centre is a major customer in this zone (second largest water user in all networks). Disinfection residuals are not currently well maintained in the area between the Ramsay St Pump station and the Mt Charlton reservoir. This includes the Capricorn Correctional Centre, and the communities of Etna Creek, Glenlee and Glendale.

1.1 Catchment description

The Caves water supply scheme is a multiple entity scheme where the water treatment is undertaken by RRC. The source water for this scheme is the treated water from the Glenmore WTP. Nonetheless, there is benefit in briefly describing the catchment from which Rockhampton sources their water as it impacts on LSC customers.

The Glenmore WTP draws raw water from the Barrage on the Fitzroy River. The Barrage sits at the bottom of the Fitzroy River Catchment which is the second largest in Australia covering in excess of 140,000 km². Due to the size of the catchment and the predominantly sub-tropical climate, the system is subject to highly variable but historically reliable flows with an average discharge between 5,000,000 and 6,000,000 ML/year. FRW operates the Barrage in accordance with a Resource Operations Plan (ROP).

The Barrage impoundment and upstream catchment are unprotected surface waters that are highly impacted by a multitude of different land use practices and industrial activities that occur in the various sub-catchments within the Fitzroy Basin. As such the raw water in the Barrage storage is subject to the potential impacts that occur within the catchment. Typical water quality issues that arise include cyanobacterial blooms, mine water discharges that alter water quality aesthetics and high flow or flooding events that lead to highly variable raw water quality e.g. rapid changes in turbidity (up to 2000 NTU), and fluctuations in iron and manganese concentration.

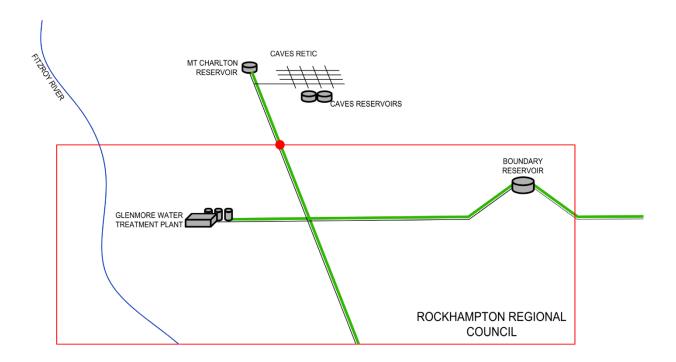


Figure 8 - The Caves schematic

2 Scheme Infrastructure and Operation

2.1.1 Glenmore Water Treatment Plant

The Glenmore WTP in Rockhampton is owned and operated by Rockhampton Regional Council, and this information is included here for completeness of understanding of potential risks that LSC` may have to manage.

The Glenmore WTP has a maximum capacity to treat 120 ML/d.

The design of the Glenmore WTP has been maximised to handle very high raw water turbidity and the WTP can treat raw water with turbidity in excess of 2000 NTU.

Raw water is pumped to the inlet of the WTP where the option exists for pre-chlorination or chlorine dioxide dosing (oxidation of iron and manganese, or for treating algal toxins). Influent raw water is dosed with a coagulant and pumped into two identical parallel train flocculation/sedimentation basins.

Powdered Activated Carbon is added to remove colour, and polyacrylamide is added as a water clarification aid.

Water then passes through the sedimentation tank (chlorine dioxide can be dosed here also) and clarified water (target turbidity of 1.0 to 1.5 NTU) is collected via finger weirs into collection channels which then transfer the clarified water to the filters.

Filtration is achieved using 10 rapid gravity sand and garnet filters. Each filter contains a filter-to-waste function which enables poor quality filtered water to be wasted until the target water quality is achieved. Filters typically produce water with turbidity of <0.1 NTU.

Filtered water is dosed with hydrated lime by one of two duty/standby lime feeding systems to correct pH (pH 7.8 target) and is then disinfected with chlorine gas with a free chlorine residual setpoint of 1.1 mg/L with a target range of 0.5 to 1.5 mg/L of free chlorine (alternatively, chlorine dioxide is able to be used for disinfection).

The Glenmore high-lift water pump station (WPS) pumps water from the WTP through a network of trunk distribution mains to fill the Yaamba Road Reservoir which is the normal reservoir that supplies water to LSC.

2.1.2 Reticulation:

The FRW owned Yaamba Road Reservoir supplies water via the Ibis Ave WPS to the transfer point with LSC (Ramsay Creek flowmeter) from where water feeds the Glenlee, Glendale, Rockyview and Etna Creek areas as well as filling the Mt Charlton Reservoir and The Caves Reservoir. There is also a water meter at Argyle Avenue, where responsibility is again assumed by FRW.

The Mt Charlton Reservoir is a fully enclosed and vermin proof 9 ML concrete reservoir constructed in 1925. LSC operates a rechlorination facility at this location, with dosing of sodium hypochlorite, interlocked to inflow with a target residual of 0.8 mg/L. SCADA monitors the disinfection concentration, and action alarms indicate when the target range is exceeded, and callouts if the concentration is above 1.8 or below 0.3 mg/L.

The Mt Charlton Reservoir re-chlorination manages the risks due to the long service line from Rockhampton, and following re-chlorination, The Caves receives good residuals from Mt Charlton, but can receive low residuals when the supply bypasses the reservoir at times of high demand. However, in these circumstances the residuals are improved due to the lesser water age. There is a dead end at Barmoya Rd, the Caves. This site is regularly turned over as there is a standpipe access from the hydrant at the end of the line, and the dead end is located ~300m from the Caves Pub sampling location. The chlorine storage tank at Mt Charlton has been determined to minimise the length of time the sodium hypochlorite sits in the tank before using to minimise chlorite formation due to the decomposition of the sodium hypochlorite, but not too small to compromise disinfection. Depending on water usage the tanks are refilled every 7-10 days with new chlorine. The use of non-stabilised chlorine tablets at the Caves Reservoirs (replenished weekly) are used to minimise chlorate formation and not compromise disinfection effectiveness.

In contrast, the correctional centre and areas between the point of supply and the Mt Charlton reservoir often have difficulties maintaining disinfection residual. LSC does not have any disinfection facilities between the point of supply and Mt Charlton, so relies on FRW to manage the risk. Due to improved communication with FRW, the chlorine residual crossing the Ramsay Creek boundary has been increased so it is expected that the results moving forward will reflect this. These will be included in the next review of the DWQMP.

The Caves area is tested regularly for *E. coli*, with no detections of *E. coli* in weekly testing undertaken since de-amalgamation in 2014.

The reticulation network within The Caves contains 76km of pipes of the following materials and ages (Figure 9). Pipes are generally 100mm and 150mm reticulation mains, and 600mm trunk mains.

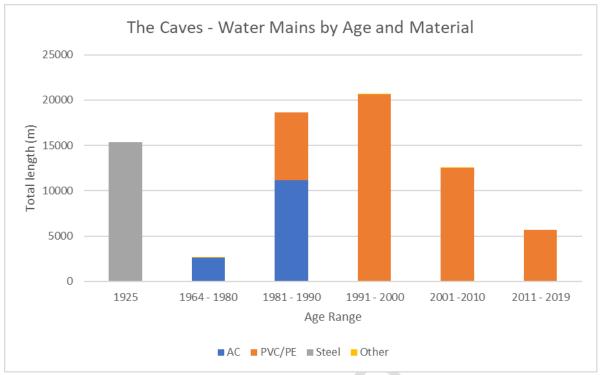


Figure 9 - The Caves Water Mains by Age and Material

The following Reservoirs are located in The Caves area.

Table 20 - The Caves reservoir details

Reservoir Name	Year Built	Capacity (ML)	Type/Design	Roof
Mt Charlton	1925	9.0	Concrete rectangular	Fully enclosed metal sheet
Chlorine Storage	1,500L		Filling Frequency	7-10 Days
The Caves 1 & 2	1985	2 x 0.1	2 x Concrete circular	Fully enclosed concrete
Chlorine Storage	Tablets		Filling Frequency	7-10 Days

3 Water Quality Information

Verification monitoring results for the Caves has been summarised in Table 21.

Table 21 - Verification monitoring data summary The Caves reticulation (2020 to 2025)

Parameter	Units	Count	Min	Average	Max
Free chlorine	mg/L	233	0.01	0.71	1.63
Electrical conductivity	μS/cm	236	164	261	386
pH	-	235	7	7.76	8.22
True colour	HU	236	0	<1	4
Turbidity	NTU	235	0.04	0.12	0.75
E. coli	mpn/100mL	276	ND	ND	ND
THMs	μg/L	19	58	122	185
Chlorate	mg/L	16	<0.002	0.14	0.25

Note: Mt Charlton Reservoir was taken offline for roof replacement from 6 July 2022 until 8 November 2022.

4 Hazards

The hazards and unmitigated risks (Medium, High or Extreme) that are relevant to the scheme have been brought forward to the Risk Assessment.

5 Risk Assessment

The preventative measures that are present for the unmitigated risks have been identified. The mitigated risk is determined based on the likelihood and consequence of the hazard occurring in the presence of the preventative measure.

Where the mitigated risk is unacceptable, risk improvement items have been identified. Additional risk improvement items have been identified if they are deemed necessary.

6 Operational Monitoring

The Caves scheme has SCADA monitoring of reservoir levels at both Mt Charlton and The Caves, and disinfection residual concentration in The Mt Charlton Reservoir (target typically 0.8 mg/L), with alarms outside the target range, and operator call-out if residual is <0.3 or >1.8 mg/L.

Livingstone Shire Council Drinking Water Quality Management Plan

Table 22 Mitigated Risk Assessment – The Caves

Process Step	Hazardous Event	Hazards managed by same barriers	Unmitigated Risk	Primary preventative measure		Mitigated		Mitigated		Uncertainty	y Documented Procedure	Risk Management Improvements		Comments
					Consequence	Likelihood	Risk			Immediate	Short term	Long Term		
Bulk water supply	Importation of water outside of agreed quality limits	Chlorine / turbidity / pH	Medium 9	Bulk water supply agreement	Moderate	Unlikely	Medium 6.3	Confident	Supply agreement		Continued monitoring of water quality at point of supply.		Re-negotiation of bulk supply agreement to include chlorine CCP's	
Reticulation	Recontamination of reservoirs/network (Mount Charlton)	Bacteria/Virus (Network)	High 10	Reservoir design, network pressure (note - issues with Mount Charlton)	Catastrophic	Unlikely	High 10	Reliable	54	Implement weekly verification monitoring at Mount Charlton Reservoir (E. coli and chlorine)	Address vermin proofing and reservoir integrity breaches upon inspections where a high risk is identified	Replace roof structure and sheeting on Mount Charlton Reservoir (To be completed end of October 2022))	Risk scoring based on Mount Charlton Reservoir. Leaks in reservoir have been repaired and roof to be completed end of October 2022).	
Reticulation	Recontamination/ disinfection failure	Bacteria/Virus (Network)	High 10	Maintain residual, rechlorination, network pressure.	Major	Unlikely	Medium 8	Confident	SCADA alarms and actions			Re-negotiation of bulk supply agreement to include water quality CCP's	LSC have no control over water supplied by FRW. Weekly testing from point of supply, LSC weekly in The Caves. Need to watch decay of residuals in points in The Caves zone.	
Reticulation	Opportunistic contamination	Opportunistic Pathogen (<i>Naeglaria</i> <i>fowlerii</i>)	Medium 5	Disinfection residual	Major	Rare	Medium 5	Estimate						
Reticulation	Breakthrough from WTP	Manganese (Glenmore)	Low 3	Nil	Moderate	Rare	Low 3	Reliable				Re-negotiation of bulk supply agreement to include water quality CCP's	LSC have no control over water supplied by FRW. Weekly testing from point of supply.	
Reticulation	Reservoir sediment, sloughing in pipes	Turbidity (network)	Medium 8	Mains flushing program	Minor	Possible	Medium 6	Reliable	Mains flushing program				Mains flushing at dead ends at 3/6-month intervals; can amend based on customer complaints and add to program if required	
Reticulation	Reaction of organic matter with chlorine in reticulation	Disinfection by- products	Medium 6	Control disinfection levels; mains flushing program	Moderate	Unlikely	Medium 6	Reliable						
Reticulation	Mains break	Failure of supply	Medium 8	Asset replacement/ management	Minor	Unlikely	Low 4	Confident						
Rechlorination	Rechlorination overdose (The Caves)	Chlorine	Medium 9	SCADA Alarms	Moderate	Unlikely	Medium 6	Certain					Use of un-stabilized chlorine tablets makes overdosing unlikely.	
Rechlorination	Breakdown of sodium hypochlorite	Chlorate	Medium 9	Chemical turnover	Moderate	Rare	Low 3	Reliable					Testing undertaken after previous risk assessment. Results were low; this is not believed to be a concern	
Whole of System	Any error	Operator error	High 15	Chlorination post Mt Charlton. Reliant on FRW processes to identify issues.	Catastrophic	Rare	Medium 6	Reliable	Staff training documented				Bulk water agreement requires two-way communication of any issues. Emergency Response Procedures - responsive rather than preventative.	

PART 4 NERIMBERA DRINKING WATER SCHEME

1 Overview of Scheme

The entire water supply for Nerimbera is sourced from and is a zone within the Glenmore Water Treatment Plant reticulation network. The local government boundary cuts this area from the Glenmore WTP reticulation network. LSC has no role in treating the water for this scheme.

Nerimbera is a small community located ~8 km east of the Rockhampton town Centre, and pressure is maintained by the Lakes Creek Road Water Pump Station. LSC has no pumps or reservoirs in the Nerimbera zone. There is an abattoir located at the far end of this reticulation zone which is the largest potable water user by volume in all networks, and this is considered to be a high-risk customer. There is no further treatment or rechlorination in this zone.

1.1 Catchment description

The Nerimbera water supply scheme is a multiple entity scheme where the water treatment is undertaken by Rockhampton Regional Council. The source water for this scheme is the treated water from the Glenmore WTP. Nonetheless, there is benefit in briefly describing the catchment from which Rockhampton sources their water as it impacts on LSC customers.

The Glenmore WTP draws raw water from the Barrage on the Fitzroy River. The Barrage sits at the bottom of the Fitzroy River Catchment which is the second largest in Australia covering in excess of 140,000 km². Due to the size of the catchment and the predominantly sub-tropical climate, the system is subject to highly variable but historically reliable flows with an average discharge between 5,000,000 and 6,000,000 ML/year. FRW operates the Barrage in accordance with a Resource Operations Plan (ROP).

The Barrage impoundment and upstream catchment are unprotected surface waters that are highly impacted by a multitude of different land use practices and industrial activities that occur in the various sub-catchments within the Fitzroy Basin. As such the raw water in the Barrage storage is subject to the potential impacts that occur within the catchment. Typical water quality issues that arise include cyanobacterial blooms, mine water discharges that alter water quality aesthetics and high flow or flooding events that lead to highly variable raw water quality e.g. rapid changes in turbidity (up to 2000 NTU), and fluctuations in iron and manganese concentration.

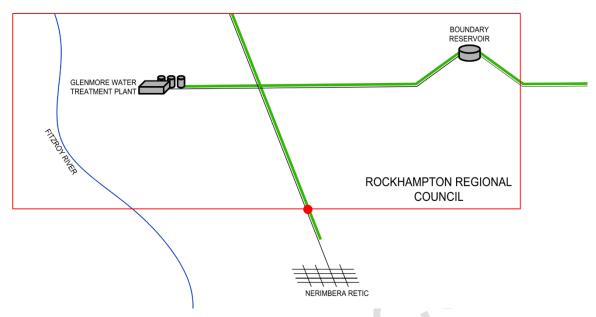


Figure 10 - Nerimbera schematic

2 Scheme Infrastructure and Operation

2.1.1 Glenmore Water Treatment Plant

The Glenmore WTP in Rockhampton is owned and operated by Rockhampton Regional Council, and this information is included here for completeness of understanding of potential risks that LSC may have to manage.

The Glenmore WTP has a maximum capacity to treat 120 ML/d.

The design of the Glenmore WTP has been maximised to handle very high raw water turbidity and the WTP can treat raw water with turbidity in excess of 2000 NTU.

Raw water is pumped to the inlet of the WTP where the option exists for pre-chlorination or chlorine dioxide dosing (oxidation of iron and manganese, or for treating algal toxins). Influent raw water is dosed with a coagulant and pumped into two identical parallel train flocculation/sedimentation basins.

Powdered Activated Carbon is added to remove colour, and polyacrylamide is added as a water clarification aid.

Water then passes through the sedimentation tank (chlorine dioxide can also be dosed here), and clarified water (target turbidity of 1.0 to 1.5 NTU) is collected via finger weirs into collection channels which then transfer the clarified water to the filters.

Filtration is achieved using 10 rapid gravity sand and garnet filters. Each filter contains a filter-to-waste function which enables poor quality filtered water to be wasted until the target water quality is achieved. Filters typically produce water with turbidity of <0.1 NTU.

Filtered water is dosed with hydrated lime by one of two duty/standby lime feeding systems to correct pH (pH 7.8 target) and is then disinfected with chlorine gas with a free chlorine residual setpoint of 1.1 mg/L with a target range of 0.5 to 1.5 mg/L of free chlorine (alternatively, chlorine dioxide is able to be used for disinfection).

The Glenmore high-lift water pump station (WPS) pumps water from the WTP through a network of trunk distribution mains to fill the Yaamba Road Reservoir which is the normal reservoir that supplies water to LSC.

2.1.2 Reticulation:

The Yaamba Road Reservoir also gravity feeds to the Lakes St Pump station which maintains pressure in the Lakes Creek reticulation zone, and also to the Nerimbera scheme. The point of supply to Nerimbera is located on the outlet of the bulk water meter. There are also six houses off Hartington Ave that are directly fed using RRC infrastructure.

There are no reservoirs or disinfection facilities in Nerimbera.

The Nerimbera zone is small and there are several dead ends in the scheme. The abattoir is located on one of these lines, and is a significant water user (average usage is 14.7L/sec supplied via a 250mm main). This high-water use results in a low water age within the area. There is a sampling location that has been established at this location.

There are no areas of low pressure.

A second water sampling point was installed in Nerimbera in 2015, and routine sampling of the sample points have not detected *E. coli.*

The reticulation network within Nerimbera contains 10km of pipes of the following materials and ages (Figure 11).

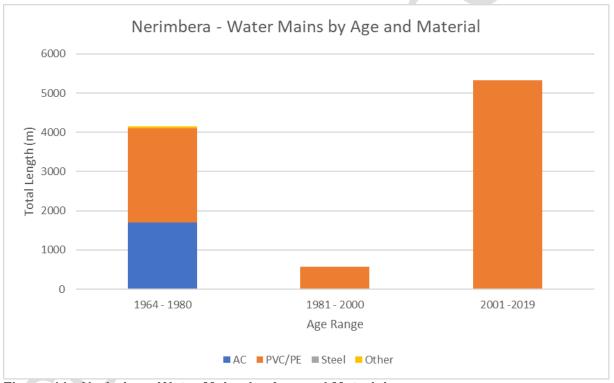


Figure 11 - Nerimbera Water Mains by Age and Material

3 Water Quality Information

Verification monitoring results for Nerimbera has been summarised in Table 23.

Parameter	Units	Count	Min	Average	Max
Free chlorine	mg/L	215	0.02	0.47	1.28
Electrical conductivity	μS/cm	213	157	245.94	653
pН	-	213	7	7.57	8.2
True colour	HU	213	<1	<1	4
Turbidity	NTU	213	0.06	0.18	3.06
E. coli	mpn/100mL	217	ND	ND	ND
THMs	μg/L	18	63	100	212
Chlorate	mg/L	15	0.006	0.102	0.233

The minimum residual is <0.1mg/L. As identified in the risk assessment Livingstone Shire Council has no control over the chlorine residual provided by RRC to the point of supply at sample point NR1 in Nerimbera. However, since re-negotiating the bulk supply agreement that Livingstone Shire Council currently has in place with RRC, a KPI of a minimum chlorine residual crossing the boundary of 1mg/L has now been implemented. Since this initiative, the residuals in the Nerimbera network have improved and will be continue to be monitored. Communication with relevant RRC staff who manage the chlorine residual at the Yaamba road reservoir site now occurs whenever a residual below 1mg/L is measured. These improved results should be evident in the next review of the DWQMP.

4 Hazards

The hazards and unmitigated risks (Medium, High or Extreme) that are relevant to the scheme have been brought forward to the Risk Assessment.

5 Risk Assessment

The preventative measures that are present for the unmitigated risks have been identified. The mitigated risk is determined based on the likelihood and consequence of the hazard occurring in the presence of the preventative measure.

Where the mitigated risk is unacceptable, risk improvement items have been identified. Additional risk improvement items have been identified if they are deemed necessary.

6 Operational Monitoring

Livingstone Shire Council conduct manual operational monitoring of the Nerimbera area of the scheme with weekly chlorine residuals, pH and conductivity undertaken as part of the samples taken for verification monitoring by an external laboratory.

Table 24 Mitigated Risk Assessment – Nerimbera

able 27	mingatou Nisk A	ssessifient – Nem	110014										
Process Step	Hazardous Event	Hazards managed by same barriers	Unmitigated Risk	Primary Mitigated Uncertainty Documented Procedure				Documented Procedure	Risk Mar	Comments			
					Consequence	Likelihood	Risk	1		Immediate	Short term	Long Term	
Bulk water supply	Importation of water outside of agreed quality limits	Chlorine / turbidity / pH	Medium 9	Bulk water supply agreement	Moderate	Rare	Low 3	Confident	Supply agreement		Continued monitoring of water quality at point of supply.		LSC have no control over water supplied by FRW Re-negotiation of bulk supply agreement to include water quality CCP's
Reticulation	Recontamination/ disinfection failure	Bacteria/Virus (Network)	High 10	Maintain residual, network pressure	Major	Unlikely	Medium 8	Confident	3				Weekly testing from FRW at handover, LSC monthly in Nerimbera. Loss of disinfectant residual not a concern in Nerimbera due to high water user (abattoir)
Reticulation	Opportunistic contamination	Opportunistic Pathogen (<i>Naeglaria</i> <i>fowlerii</i>)	Medium 5	Disinfection residual	Major	Rare	Medium 5	Estimate					Factsheet in ADWG states that maintaining chloring residuals at 0.5mg/L or higher will control Naegleria fowleri,
Reticulation	Breakthrough from WTP	Manganese (Glenmore)	Low 3	Nil	Moderate	Rare	Low 3	Reliable			Continued monitoring of water quality at point of supply.		LSC have no control over water supplied by FRW Re-negotiation of bulk supply agreement to include water quality CCP's
Reticulation	Reservoir sediment, sloughing in pipes	Turbidity (network)	Medium 8	Mains flushing program	Minor	Possible	Medium 6	Reliable	Mains flushing program				Mains flushing at dead ends at 3/6 month intervals; can amend based on customer complaints and add to program if required
Reticulation	Reaction of organic matter with chlorine in reticulation	Disinfection by- products	Medium 6	Monitor disinfection levels; mains flushing program	Moderate	Unlikely	Medium 6	Reliable			Continued monitoring of water quality at point of supply.		LSC have no control over water supplied by FRW. Re-negotiation of bulk supply agreement to include water quality CCP's
Reticulation	Mains break	Failure of supply	Medium 8	Asset replacement/ management	Minor	Unlikely	Low 4	Confident					
Whole of System	Any error	Operator error	High 15	Reliant on FRW processes to identify issues and communicate	Catastrophic	Rare	Medium 6	Reliable	Staff training documented				Bulk water agreement requires two way communication of any issues. Emergency Response Procedures - responsive rather than preventative.

PART 5 MARLBOROUGH DRINKING WATER SCHEME

1 Overview of Scheme

The Marlborough water supply scheme is catchment to tap bore water scheme that serves 100 customers in the community of Marlborough. The scheme is designed to provide up to 100 kL/day. Bore water is treated sequentially by bag filtration and cartridge filtration and/or reverse osmosis prior to disinfection. It is fully owned and operated by LSC.

1.1 Marlborough Bores

Aquifer Description:

The Marlborough Drinking Water Scheme is supplied with water from two shallow bores (RN 91861 and RN 91966 on Department of Natural Resources, Mines and Energy groundwater database) located 2-3 km to the north of the Marlborough township on Glenprairie Road. The bores draw water from two shallow aquifers, the Marlborough Creek Alluvium aquifer (12-15 m depth) and a deeper decomposed granite aquifer (18-20 m depth). Land use in the area is predominantly cattle grazing with some fodder production occurring using groundwater irrigation.

The bores were drilled in late 1995 and early 1996, are approximately 20-25 m deep with about 7 m depth to water level and each bore is capable of producing water at about 5 L/sec. Pump tests conducted in early 1996 following an extended period of drought suggest that a yield of 3.9 L/sec be adopted as the target sustainable pumping rate during drought conditions. At this level of supply, the daily and annual demand targets of 40 kL and approximately 15 ML respectively are highly sustainable into the future. Two bore pumps capable of operating in duty/standby mode and with a capacity of 3.5 L/sec are used to pump raw water from the bore site to the Marlborough WTP. The bores are operated one at a time, and alternate after each pumping cycle. The selected bore begins pumping when the raw water tank drops to 70%, and shuts down at 91%.

Bore construction details:

Each bore is cased with 160 mm diameter polyvinyl chloride (PVC) pipe with two separate screens located at 13-15 m and 18-20 m depth. The bore heads are located approximately three metres apart and are encased in concrete with the bore heads raised approximately 500 mm above the surface of the ground. The bore heads are sealed to prevent the entry of any contaminating material. The bore site is contained within a fenced enclosure that is locked at all times.

As per the ADWG good practice guide for microbial safety, the raw water *E. coli* data supports the characterisation of this catchment as secure groundwater (Category 1), with a microbial band 1 (with a 95th percentile of 1mpn/100ml). This data has been collected weekly since 2020 from the inlet to the plant and is shown in figure 4.

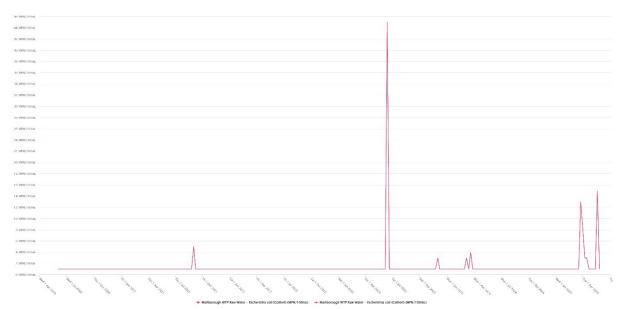


Figure 12 - Marlborough WTP Raw Water E. coli Data 2020-2025

2 Scheme Infrastructure and Operation

The Marlborough WTP consists of 2 parallel 50kL/day reverse osmosis (RO) treatment trains, which operate together. The treatment trains are identical in their treatment philosophy, but the reverse osmosis skids differ slightly.

Bore water is pumped from the two duty/standby bore site to a 45kL raw water storage before entering the Marlborough WTP. The bore pumps are operated automatically based on drawdown from the raw water storage tank at the WTP.

The raw water supply splits and can feed either treatment train. For each train, a single raw water feed pump pumps raw water through a 5 μ m bag filter and a 5 μ m cartridge filter in series. The water is then split into a "blend" stream and the RO stream.

Reverse Osmosis Plant 1 and Plant 2

Prior to entering the RO process, filtered water is dosed using a single pump with anti-scalant (Hypersperse MSI410). The trains of plant 1 and plant 2 is a 4 stage RO process with 8 membrane elements arranged in a 3:2:2:1 configuration (i.e. 3 elements as the first stage, 2 each for the second and third stages, and the concentrate from both 3rd stage elements directed through the 4th stage). Similarly, there is a proportion of RO concentrate recycling to enhance recovery, and the permeate streams are combined at an approximate ratio of 3:1 with filtered bore water to produce the final potable water.

Potable water is chlorinated prior to being directed into the top of two 45kL clear water tanks that are balanced with a third 45kL clear water tank.

The final water is disinfected using a single pump dosing sodium hypochlorite interlocked to inflow, with a control loop to produce a free chlorine residual of 0.8 mg/L in the final drinking water. SCADA operational alarms for the free chlorine residual are in place to detect excursions outside of a target range. Alarms are sent to the Operators outside the target range, with them attending the site if chlorine drops below 0.3 or exceeds 1.8 mg/L. The chlorine storage tank at the Marlborough WTP has been sized at 20L and determined to minimise the length of time the sodium hypochlorite sits in the tank before using to minimise chlorite formation due to the decomposition of the sodium hypochlorite, but not too small to compromise disinfection. Depending on water usage the tank is refilled every 7-10 days with new chlorine.

Treated water is reticulated via a three pump WPS that operates in duty/standby mode to supply water at a constant pressure (~320 kPa) to the reticulation system. The Marlborough distribution system does not consist of any other reservoir storages and due to its small size and good penetration of free chlorine, no rechlorination is required.

Reject RO concentrate water produced during the reverse osmosis treatment process is stored in a 25kL reservoir that can be accessed by water carriers for non-potable water applications such as road construction. A standpipe dedicated for this purpose is clearly signed to indicate that the water is non-potable.

2 further 45kL reservoirs are also used to store RO concentrate for firefighting purposes. The remaining reject water is used to irrigate the park area surrounding the Marlborough WTP.

The Marlborough WTP is controlled automatically and remotely by SCADA with on-line pressure and flow monitoring of permeate, reject, recirculation and blended product (both plants). In addition, there is monitoring of conductivity in the combined outlet from either or both plants and chlorine and pH monitoring in the chlorine dosing line that monitors product water. In addition, Plant 1 has additional separate monitoring of pH, turbidity and electrical conductivity product water prior to mixing with the product water from Plant 2. The Marlborough WTP is connected via radio telemetry to the LSC SCADA system to allow remote monitoring (not control). The Woodbury operators monitor the clear water supply level and disinfection.

There are no options for any of the treatment steps (filtration, reverse osmosis, disinfection) to be bypassed, although the flow of the split treatment streams is manually adjustable to slightly alter the blend ratio of the two treatment streams to achieve a target final water quality.

As the Marlborough area often experiences extended power outages, a diesel generator has been installed that is capable of powering the entire Marlborough WTP to allow continued treatment and supply of drinking water until mains power is restored. The bore pumps are not connected to the generator, but this is not normally an issue as the WTP has 2 days' supply of treated water, and an additional storage of 1 day's supply of raw water.

The RO membranes are replaced every 2 years as it is more cost effective to replace the membranes than to routinely clean them. Bag and cartridge filters are replaced by the Maintenance team every 2-3 months.

Treatment Chemicals:

Antiscalant, sodium hypochlorite.

Reticulation Network

Treated water is reticulated via a three-pump water pump station within the WTP that operates in duty/standby mode to supply water at a constant pressure (~320 kPa) to the reticulation system. Due to its small size and good penetration of free chlorine, no re-chlorination is required.

The Marlborough pipe network consists of 4.8km of mains, with the age and material shown in Figure 13.

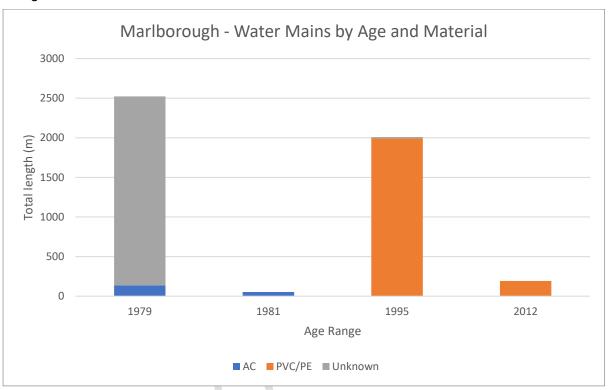
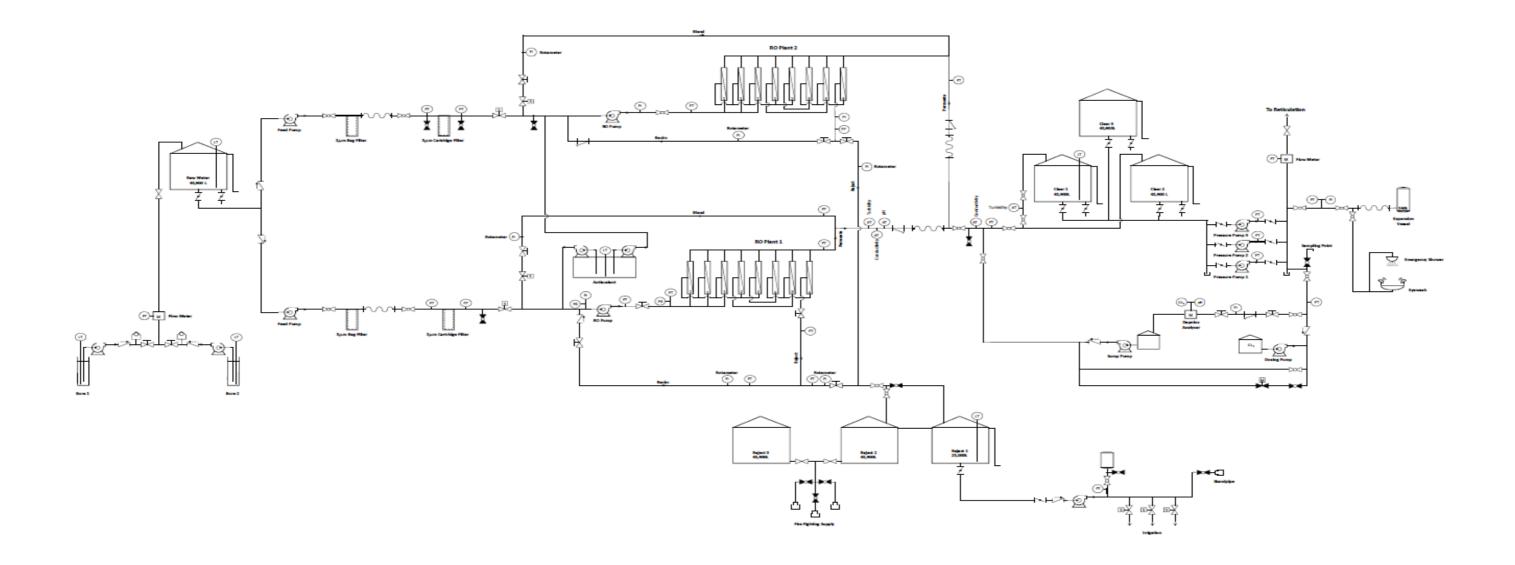



Figure 13 - Marlborough Water Mains by Age and Material

MARLBOROUGH WATER SUPPLY SCHEMATIC

ATT.031

28/09/2022 Page 1 VERSION 1.0

Figure 14 - Marlborough WTP Schematic

Figure 14 above is a catchment to Tap Marlborough Water Supply Schematic showing water supply bores to reticulation. There are no reservoirs or pump stations within the reticulation network. Online monitoring locations are identified.

3 Water Quality Information

Typical water quality for the Marlborough scheme follows, based on a review of operational and verification monitoring data from 2020-2025.

Table 25 - Verification monitoring data summary - Marlborough reticulation (2020 to 2025)

Parameter	Units	Count	Min	Average	Max
Free chlorine	mg/L	58	0.27	0.64	0.86
Electrical conductivity	μS/cm	58	412	571	798
рН	-	58	7.1	7.6	8
True colour	HU	58	<1	0.03	2
Turbidity	NTU	57	0.04	0.15	2.83
E. coli	mpn/100mL	56	ND	ND	ND
THMs	μg/L	19	< 5	<5	10
Chlorate	mg/L	16	0.099	0.23	0.32

There are no major variations in water quality that indicate that the bore field has rapid hydraulic connection to the surface. For the purposes of the risk assessment, this limits the risk that the bores can be easily contaminated due to catchment activities. The bore water produces water with a low turbidity, a TDS of ~700mg/L (considered fair quality), and hardness of ~450 mg/L.

Radionuclides:

Tested in 2014. Gross alpha and gross beta were less than the detection limit.

Cryptosporidium and Giardia

Have not been detected in either the raw or treated water.

Operational data: Marlborough WTP is operated to achieve an electrical conductivity of ~620 µS/cm. Records indicate that this target range is routinely achieved.

Disinfection residuals are targeted at 0.8 mg/L in the clear water tank.

Table 26 - Verification monitoring - Marlborough WTP raw & treated water, standard water analyses & heavy metals (2020-25)

able 26 - Vernication mon				Raw		Treated				
Parameter	Units	Count	Min	Average	Max	95 th percentile	Count	Min	Average	Max
Nitrate	mg/L	57	0.06	0.81	1.03	0.94	51	0.2	0.4	0.76
Sulfate	mg/L	57	7	23.79	29	27	54	6	8.75	24
Trihalomethanes (THMs) (Total)	μg/L	N/A	N/A	N/A	N/A	N/A	38	<5.0	<5.0	9
Fluoride (naturally occurring)	mg/L	54	0.1	0.138	0.5	0.2	54	<1	<1	<1
Aluminium (acid-soluble)	mg/L	54	<0.01	<0.01	0.05	<0.01	54	<0.01	0.002	0.09
Copper	mg/L	53	<0.001	0.009	0.04	<0.001	54	0.002	0.045	0.006
Iron	mg/L	54	<0.05	<0.05	<0.05	<0.05	54	<0.05	<0.05	<0.05
Lead	mg/L	53	<0.001	<0.001	0.002	<0.001	54	<0.001	<0.001	<0.001
Manganese	mg/L	53	<0.001	<0.001	<0.001	<0.001	54	<0.001	<0.001	0.003
Zinc	mg/L	54	<0.005	0.019	0.09	<0.005	54	<0.005	<0.005	0.019
pH	-	53	7.63	8.11	8.55	8.37	54	7.17	7.99	8.56
Turbidity	NTU	58	<0.1	0.23	1.8	0.56	53	<0.1	0.19	0.6
Alkalinity (Total as CaCO3)	mg/L	53	156	422.49	478	470	54	120	175.24	445
Calcium	mg/L	53	8	25.13	33	28.4	54	6	9.64	23
Chloride	mg/L	53	63	204.77	229	226.2	54	46	79.72	190
Colour (True)	HU	52	<1	2.19	5	4.25	52	<1	2.21	5
Conductivity	μS/cm	53	483	1306.84	1460	1414	54	383	572.68	1280
Magnesium	mg/L	53	35	105.41	127	117	54	26	41.33	103
Nitrite	mg/L	57	<0.01	<0.01	0.02	<0.01	51	0.2	0.4	0.76
Potassium	mg/L	53	<1	1.02	2	1	54	<1	<1	<1
Sodium	mg/L	53	42	106.77	123	117.8	54	35	48.31	104
Total Dissolved Solids (TDS)	mg/L	58	314	855.23	949	923	54	249	372.29	832
Hardness (Total as CaCO ₃)	mg/L	53	164	496.83	605	548	54	122	194.24	482
Total Organic Carbon (TOC)	mg/L	19	<1	5	7	6.6	17	<1	2	3

Davamatav	I linite			Raw	1	Treated					
Parameter	Units	Count	Min	Average	Max	95 th percentile	Count	Min	Average	Max	
Arsenic	mg/L	36	0.002	0.002	0.002	0.002	36	<0.001	<0.001	0.001	
Cadmium	mg/L	38	0	0	0	0	38	0	0	0	
Chromium	mg/L	38	0.003	0.004	0.005	0.004	38	0	0.001	0.003	
Nickel	mg/L	38	0.001	0.004	0.253	0.014	38	<0.001	<0.001	0.001	
Selenium	mg/L	38	<0.01	<0.01	<0.01	<0.01	38	<0.01	<0.01	<0.01	
Mercury	mg/L	38	<0.01	<0.01	<0.01	<0.01	38	0	0	0	
Cryptosporidium	O = = : = t = /4.01	5	ND	ND	ND	N/A	5	ND	ND	ND	
Giardia	Oocysts/10L	5	ND	ND	ND	N/A	5	ND	ND	ND	
OC/OP Pesticides	μg/L	5	ND	ND	ND	N/A	5	ND	ND	ND	

4 Hazards

The hazards and unmitigated risks (Medium, High or Extreme) that are relevant to the Marlborough service have been brought forward to the Marlborough Risk Assessment.

5 Risk Assessment

The preventative measures that are present for the unmitigated risks have been identified. The mitigated risk is determined based on the likelihood and consequence of the hazard occurring in the presence of the preventative measure.

Where a preventative measure is required to lower the risk to an acceptable level, the procedure used to ensure the measure is in place, or a risk management improvement plan item is identified. Additional items are added to the risk management improvement plan if deemed necessary.

Livingstone Shire Council Drinking Water Quality Management Plan

Table 27 Mitigated Risk Assessment – Marlborough

Process	Hazardous	Hazards managed by	Unmitigated	Primary preventative	Other Preventative		Mitigated		Uncertainty Documented		Risk Manage	Comments		
Step	Event	same barriers	Risk	measure	Measures	Consequence	Likelihood	Risk	Uncertainty	Procedure	Immediate	Short term	Long Term	Comments
Treatment	Source contamination	Protozoa (Marlborough)	High 10	Bore integrity		Catastrophic	Rare	Medium 6	Confident	O/M SCADA monitoring for integrity	Inspect bore heads and seal any identified gaps – Completed			Switchboard at bores (installed 2017) has improved reliability. Completed bore- head inspection and sealed any gaps.
Treatment	Source contamination	Bacteria/Virus (Marlborough)	High 15	Bore integrity, Disinfection		Catastrophic	Rare	Medium 6	4	O/M SCADA monitoring for integrity	Inspect bore heads and seal any identified gaps			E.Coli sampling conducted weekly to verify integrity of bores.
Treatment	RO breakthrough	Hardness/ TDS (Marlborough)	High 10	RO SCADA monitor conductivity – no alarm, antiscalant		Minor	Unlikely	Low 4	Confident					
Chlorination	Failure of chlorine dosing	Bacteria/Virus (Marlborough)	High 15	Disinfection SCADA controlled and monitored		Catastrophic	Rare	Medium 6	Certain	SCADA closely monitored, operators onsite within 90 min.		Begin monitoring <i>E.</i> <i>coli</i> in raw water		In calendar year 2019, there was one event where 16.7kL of water with Ct <15 went out (according to SCADA). Has not occurred since.
Chlorination	Chlorine overdose	Chlorine	Medium 9	SCADA monitoring and operator action		Moderate	Unlikely	Medium 6	Confident					
Chlorination	Breakdown of sodium hypochlorite	Chlorate	Medium 9	Chemical turnover		Moderate	Rare	Low 3	Reliable		Small (20L) storage tank used to minimise chlorate formation. Filled weekly.			Testing undertaken after previous risk assessment. Results were low; this is not believed to be a concern
Reticulation	Reaction of organic matter with chlorine in reticulation	Disinfection byproducts	Medium 6	SCADA controlled dosing		Minor	Rare	Low 2	Confident					THM results since 2014 very low
Reticulation	Contamination from main break	Protozoa (network)	Medium 6	Mains break procedure, network pressure.		Catastrophic	Rare	Medium 6	Confident					
Reticulation	Mains break	Opportunistic Pathogen (Naeglaria fowlerii)	Medium 5	Disinfection maintained, mains break procedure		Major	Rare	Medium 5	Reliable	Mains break procedure		Disinfection and mains break training undertaken in 2022.		Factsheet in ADWG states that maintaining chloring residuals at 0.5mg/L or higher will control Naegleria fowleri,
Reticulation	Breakdown of chemical	Chlorate	Medium 9	20L drums, ~ 2 months old at most		Moderate	Possible	Medium 9	Estimate		Small (20L) storage tank used to minimise chlorate formation. Filled weekly			Testing indicated chlorate formation was low
Reticulation	Break of pipe out of CWT	Failure of supply	Medium 8	SCADA provides awareness of problem; ability to manually isolate individual tanks	Interlock of treated water pumps to prevent pumping to retic	Major	Unlikely	Medium 8	Reliable					
Reticulation	Pump pressure loss in reticulation	Failure of supply	Medium 8	SCADA control, interlocks	Three pressure pumps in system	Major	Unlikely	Medium 8	Confident					

Drinking Water Quality Management Plan

Process	Hazardous	Hazards managed by	Unmitigated	Primary preventative	Other Preventative	N	/litigated		Uncertainty	Documented	Risk Management Improvements			Comments
Step	Event	same barriers	Risk	measure	Measures	Consequence	Likelihood	Risk	Oncertainty	Procedure	Immediate	Short term	Long Term	Comments
Reticulation	Backflow	Bacteria/Virus (Network)	High 10	All metered connections have backflow prevention. Disinfection, pressurised scheme		Catastrophic	Rare	Medium 6	Reliable					Not aware of any unmetered connections
Reticulation	Backflow	Chemical	Medium 6	All metered connections have backflow prevention. Disinfection, pressurised scheme		Moderate	Rare	Low 3	Reliable	7				Not aware of any unmetered connections
Whole of System	Manual mistake	Operator error	High 15	SCADA process monitoring		Major	Rare	Medium 5	Reliable					

6 Operational Monitoring

The Marlborough WTP is operated automatically, and remotely. Plant start-up and shutdown are based on clearwater reservoir levels.

The PLC for the treatment plant has continuous on-line monitoring of permeate, reject, recirculation and blended product flow. This ensures that the process is operating as designed. In addition, feed water pump and RO pump pressures are monitored to ensure operation within the normal range.

There is online monitoring of chlorine residual, with alarms outside the target range and operation staff respond if free chlorine is outside the range of 0.3 – 1.8 mg/L. An operator can be onsite within 90 minutes if necessary.

Additionally, there is online monitoring of conductivity, pH and turbidity of the product water (the mix of RO permeate and blend water) for Plant 1. Plant 2 is not monitored in the same way as there is online conductivity monitoring for the final product water (blend plus RO permeate) that measures either Plant 2 if only this plant is operating, or the combination of Plant 1 and Plant 2 if both skids are operating. If alarms are activated a text and voice message is sent to the maintenance team who are responsible for correcting any issues with this plant.

APPENDIX A – High Risk Customers & Pipeline Customers

	High Risk Customers							
Scheme	Customer contact details							
ıst	5. Yeppoon Hospital8 Hoskyn Drive, Hidden Valley. QLD 4703 Phone – (07) 4913 3000							
8 Hoskyn Drive, Hidden Valley. QLD 4703 Phone – (07) 4913 3000 6. Dialysis Users See the Water and Waste admin team for list								
Nerimbera	7. JBS Meatworks Lot 1 St Christopher Chapel Rd Nerimbera JBS Australia Pty Ltd PO Box 630 Rockhampton Q 4700 Phone: 4930 7800 or 4930 7820							
The	8. Capricorn Correctional Centre Bruce Highway North Rockhampton Ph: 49126200							

	RRC Pipeline Customers							
Scheme	Customer contact details							
	1. Scott Kilpatrick, 968 Yeppoon Rd Ironpot Scott & Meleese Kilpatrick PO Box 5254 Red Hill. Rockhampton Q 4701 Meleese – 0411 722 211 Scott – 0413 373 131 Home: 4936 1100 Work: 4926 4822							
ЭС	 2. Surf Lakes 1662 Yeppoon Road. Mulara QLD 4703 Lessee: Surf Lakes Holdings 5c/16 Queensland Ave. Broadbeach QLD 4218 Email: info@surf-lakes.com.au 							
Pipeline	3. Tropical Pines Pty Ltd PO Box 1054 Yeppoon Q 4703 Mobile - 0408 315 503							
Pip	4. The Pines Residential Subdivision Jordy Drive, Yeppoon C/- Livingstone Shire Council Owner: PPY Developments Pty Ltd Peter Morely Mobile #: 0431 292 453 Work #: 5538 6889 Email: peter@hcorp.com.au PO Box 208 Surfers Paradise Q 4217							

APPENDIX B – List of Operational Documents

	Work Instructions
QA ID	Title
03-WI.001	Drinking Water Monitoring (E.coli)
03-WI.002	Drinking Water Incident Reporting
03-WI.007	Emergency Process for Chlorine Gas Leak
03-WI.019	WWTP Cleaning the Lime Vat
03-WI.020	WWTP Batching Powdered Activated Carbon (PAC)
03-WI.021	WWTP Batching Soda Ash
03-WI.024	Collecting Water Samples for Bacteriological Testing
03-WI.027	WWTP Jar Test
03-WI.028	WWTP Manual, Forced & Automatic Operations of Backwashing Filters
03-WI.029	WWTP Draining and Cleaning the Clarifier
03-WI.030	Kellys Dam WPS – Set Outgoing Flow Rate to WTP
03-WI.031	Yeppoon West Valve Facility: Take Water from Boundary Pipeline
03-WI.033	Change Chlorine Bottle: WWTP & YSTP
03-WI.034	WWTP Alum Dose/Drop Test
03-WI.035	WWTP Lab Test Process
03-WI.039	Water Mains – Flushing Procedure
03-WI.044	WWTP Batching Polyelectrolyte for Plant Use
03-WI.047	Depolox Free Chlorine and pH Calibration
03-WI.049	Conductivity One Point Bump Test
03-WI.052	Re-chlorinating Reservoirs with sodium hypochlorite
03-WI.053	Re-chlorinating Reservoirs with chlorine tablets
03-WI.064	WWTP Calibration of Dosed Water pH Probe

	Plans					
QA ID	Title					
WMP.003	Kelly's Offstream Storage: Emergency Action Plan					
WMP.003 (Appendix)	Appendix – Kelly's Offstream storage Drawing Plans					
EMP.002	Environmental Management Plan – Woodbury Water Treatment Plant					
WMP.004	Customer Service Standards Water & Sewerage Services					
WMP.005	Water & Waste Operations Emergency Operations Plan					
BCM.09	Business Continuity Plan Drinking Water and Sewerage					
ASSET02	Asset Management Plan: Water					

4

	Procedures						
QA ID	Title						
MSP-034	Waterpark Creek Operating Rules						
MSP-035	Water Main Pressure and Flow Testing						
MSP-047	Chemical Procurement and Receipt						
MSP-052	New Mains or Main Breaks Disinfection Procedure						
MSP-056	Scada Cyber Security						
MSP-064	Critical and Operational Control Point Procedure						

	Attachments
QA ID	Title
ATT.146	Potable Water Sampling Points
ATT.130	WWTP Operators Tasks Matrix
ATT.105	Waste Water Quality Monitoring Programs
ATT.106	Water Quality Monitoring Programs
ATT.107	Microbiology Sampling Schedule
ATT.077	WWTP layout map
ATT.108	Microbiology Sampling Sheet Template
ATT.109	Water Sampling Labels Template
ATT.134	LSC Water Supply Schemes
ATT.171	WWTP Testing Schedule

	Guides						
QA ID	Title						
GDE.011	WWTP Filtration Process						
GDE.012	Reservoir Re-chlorination Process						
GDE.013	WWTP Disinfection Process						
GDE.015	Kelly's Offstream Storage Operations and Maintenance Manual						
GDE.016	Kelly's Offstream Storage Fixed Dispersion Cone Valve Manual						
GDE.057	Boiled Water Alert						

These documents are managed under LSC's Quality Management System (QMS) based on the ISO 9001:2015 / QMS Model. These documents are updated on a 3 yearly cycle, or if an existing process has changed or a new one has been introduced. LSC's QMS is externally audited to maintain a quality improvement cycle of Plan, Do, Check, Act as part of the systems continuous improvement process. More information can be found under Section 11 "Documentation & Reporting - Quality Management System".

APPENDIX C – Bulk Water Supply Agreement (extracts)

Below are sections extracted from the Bulk Water Supply Agreement between FRW and LSC, pertaining to water quality, monitoring and reporting.

10 Water Quality and Disinfection Management

10.1 Purpose and Scope

Both FRW and LSC will conduct their own drinking water quality monitoring and reporting program in accordance with approved Drinking Water Quality Management Plans and the Australian Drinking Water Guidelines (ADWG). The purpose of this section is to document the process for advising operators of water quality issues/concerns that have the potential to impact the quality of drinking water supplied by either party to enable timely reaction to potential risks to water quality.

10.2 Responsibilities and Accountabilities

10.2.1 Monthly Water Quality Reporting

FRW will provide to LSC on a monthly basis the results of standard physical and chemical tests on raw water and drinking water sampled at the GWTP. These results will be provided to the relevant Technical Specialist in LSC within 5 working days of receipt of the results as per the DWQMP.

10.2.2 Notification of Water Quality Non-Compliances

Each party is to notify the other of any water quality non-compliance against either health or aesthetic guidelines listed in the Australian Drinking Water Guidelines that has the potential to impact the quality of drinking water in either the RRC or LSC drinking water supply schemes. This notification should be provided within 5 hours of the detection of a non-compliance and will be provided to the relevant operations officers responsible for managing drinking water quality in each Council. The party receiving water may choose to reduce or halt supply without compromising minimum daily take provisions stated elsewhere in this agreement.

10.2.3 Notification of Cessation or Rectification of Water Quality Non-ComplianceEach party is to notify the other of the cessation of a period of water quality non-compliance and any action taken to rectify the non-compliance. This notification is to be provided to the relevant operations officers responsible for managing drinking water quality in each Council as soon as reasonably possible of the cessation of the non-compliance.

10.2.4 Disinfection Management

All disinfection including the operation of reservoir re-chlorination facilities will be performed in accordance with the approved Drinking Water Quality Management Plans currently in use by FRW and LSC.

13 Risk and Incident Management

13.1 Responsibilities and Accountabilities

FRW and LSC are responsible for developing their own risk and incident management plans and procedures. In each Council drinking water incidents will be responded to in accordance with the process defined in the approved Drinking Water Quality Management Plan (DWQMP) used by each Council.

APPENDIX D – Water Supply Schematics

Guides	
QA ID	Title
ATT.189	Woodbury Water Treatment Plant Schematic
ATT.031	Marlborough Water Supply Schematic